

FSA Modernization Partner

NSLDS II Reengineering
Application Detailed Design:

Application Architecture

Version 1.1

November 26, 2002

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 1 11/26/2002

Table of Contents

1 GENERAL INFORMATION .. 4

1.1 OBJECTIVE ... 4
1.2 SCOPE .. 4
1.3 DESIGN LAYERS .. 5

2 EXECUTION ARCHITECTURE .. 6

2.1 IBM WEB SERVER AND APPLICATION SERVER .. 9
2.1.1 Directory Structure.. 9

2.2 IBM DB2 EEE... 10
2.3 ORACLE ... 10
2.4 WEB APPLICATION SECURITY... 11

2.4.1 User Authentication ... 11
2.4.2 Web Authorization ... 11
2.4.3 Encryption ... 11

2.5 REPORTING ENGINE INTEGRATION STRATEGY .. 12

3 BUSINESS LAYER DESIGN.. 14

3.1 CLASS DIAGRAM... 15
3.2 OBJECT ACTIONS... 25
3.3 SEQUENCE DIAGRAMS.. 30

3.3.1 Aid - Update Loan Details.. 31
3.3.2 Aid - View Loan History .. 32
3.3.3 Aid - Update Overpayment Details .. 33
3.3.4 Aid - View Overpayment History... 34
3.3.5 Enrollment - Add Reporting Schedule.. 35
3.3.6 Enrollment - View Summary ... 36
3.3.7 Logon ... 37
3.3.8 Organization - View Contact List... 38
3.3.9 Organization - Delete Contact from List... 39
3.3.10 Student Access – View Financial Aid Review .. 40
3.3.11 Support – View Contact List .. 41
3.3.12 Support – Add Contact to List.. 42
3.3.13 Transfer Monitor – View Transfer List .. 43
3.3.14 Transfer Monitor – Delete Transfer from List .. 44
3.3.15 Application Error ... 45
3.3.16 Java Exceptions .. 46
3.3.17 Web Conversation Framework ActionForm errors .. 47

4 ARCHITECTURE LAYER DESIGN.. 48

4.1 RCS WEB CONVERSATION FRAMEWORK... 48
4.1.1 Web Conversation implementation of MVC Design Pattern... 48
4.1.2 Implementation Example .. 51

4.2 RCS CONFIGURATION FRAMEWORK ... 58
4.3 RCS JSP CUSTOM TAG LIBRARY FRAMEWORK.. 59
4.4 RCS EXCEPTION HANDLING FRAMEWORK ... 60

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 2 11/26/2002

4.4.1 NSLDS II Exceptions ... 60
4.4.2 Field-level Validation ... 61
4.4.3 Application and System Level Exceptions... 62
4.4.4 Implementation Example .. 63
4.4.5 JSP Error Pages.. 66

4.5 RCS LOGGING FRAMEWORK .. 67
4.5.1 Logging Usage Standards... 68

4.5.1.1 DEBUG ... 68
4.5.1.2 INFO ... 69
4.5.1.3 ERROR.. 70
4.5.1.4 FATAL .. 72

4.5.2 Logging Usage Summary ... 73
4.6 RCS USER SESSION FRAMEWORK... 74

4.6.1 Session Framework Usage Guidelines... 74
4.7 CONTENT DEPLOYMENT (INTERWOVEN TEAMSITE) ... 75

4.7.1 Content Deployment Approach .. 75

5 DATA ACCESS LAYER.. 76

5.1 RCS PERSISTENCE FRAMEWORK .. 76

6 APPENDIX A - APPLICATION ARCHITECTURE QUESTIONNAIRE 84

7 APPENDIX B - OBJECT-DATA MAPPING MODEL... 85

8 APPENDIX C - ITA CODING STANDARDS ... 86

9 APPENDIX D - ITA BEST PRACTICES GUIDE... 87

10 APPENDIX E - CODING STANDARDS REVIEW CHECKLIST 88

10.1 INTRODUCTION... 88
10.1.1 Purpose .. 88
10.1.2 References .. 88
10.1.3 Reviewer Information ... 88

10.2 JAVA CODING STANDARDS .. 88
10.2.1 Source Files .. 88
10.2.2 Code Layout ... 89
10.2.3 Naming Conventions ... 89
10.2.4 Programming Style .. 90
10.2.5 Comments .. 90

11 APPENDIX F - NSLDSLOGGER PSEUDO CODE ... 91

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 3 11/26/2002

Document Control
Version Number Description Release Date Author

1.0 Initial Release 11/08/2002 Amy Settle
1.1 Modifications to

Production diagram
to include CPS in
VDC

11/20/2002 Terry Helwig

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 4 11/26/2002

1 General Information

1.1 Objective

This Application Architecture detailed design is intended to provide application developers with an
understanding of the underlying architecture supporting the NSLDS II reengineering effort. This
document will serve as the central architecture design guide to be used in conjunction with the NSLDS
II Reengineering Screens Detailed Design.

1.2 Scope

This document focuses on the business, application, and data layers of the NSLDS II web application
architecture. An overview of the execution architecture is provided in the beginning as an aid to better
understand the interaction of the web application architecture with the other NSLDS II components.
This document does not address external systems or interfaces to them. References to external
systems can be found in the NSLDS II Reengineering Interface Detailed Design documentation.

The business layer section includes the class diagram, sequence diagrams, and a mapping of the Java
objects and attributes to the tables and fields in the Enterprise Data Warehouse (EDW). The
architecture layer section includes usage guidelines on how to incorporate the different Reusable
Common Services (RCS) components provided by the Integrated Technical Architecture (ITA)
initiative into the NSLDS II application architecture. The architecture layer interacts with the
database through the data access layer, which is comprised of the ITA RCS Persistence framework.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 5 11/26/2002

1.3 Design Layers

A web-based application is comprised of several interconnected layers. This document will focus on
the business, architecture, and data access layers. The GUI/presentation layer information is detailed
in the NSLDS II Reengineering Screens Detailed Design documentation.

GUI / Presentation Layer

Business Layer

Architecture Layer

Design Layers

Data Access Layer

Data

Key

In document scope

Out of document scope

Figure 1, Design Layer

The presentation, business, and architecture layers are based on the Model-View-Controller (MVC)
design pattern. This pattern creates a separation of control between different components to ease
development and maintenance efforts. Application developers can concentrate on building the
business objects and the web site designers can create web pages without having to understand the
code needed to access the architecture and data layer. The MVC design pattern will be presented in
more detail in the architecture layer section.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 6 11/26/2002

2 Execution Architecture

The execution architecture comprises of the internal systems that the core application architecture
software components will interact with. It is the foundation of software services that the system relies
on. The core environment components are noted here because all major application design decisions
have a dependency on them. The diagrams below represent the development and production
execution architectures.

Virtual Data Center
Meriden, CT

NSLDS II SYSTEM

EAI Bus Servers
MQ Series
Data Integrator

Informatica
and

WebSphere
Application Server

Sun 3500
su35E5

4.20.15.135

NSLDS II Data
Architecture

FASTT 500 STORAGE SERVER
(40) 73.4 GB Hard Disk Drives

2.9 TB of raw storage
RAID-5

IBM 6H1
4.20.15.57

FastT500
Disk array

MicroStrategy DB
Oracle 8i

HPV1
4.20.15.59

MicroStrategy
Intelligence Server

NT 4.0
Compaq DL380

SFANT001
4.20.15.244

EAI
Development

Sun 3500
su35E16

4.20.15.136

IHS Web Server
su35E2

4.20.15.132

Page 1

NSLDS II Development Environment
Wednesday, November 20, 2002

Internet Access

ACS
Rockville, MD

DLSS
(Direct Loans)

TSYS
Columbus, GA

COD
(Disbursment)

Unknown Interfaces

TPD
(Total

Permant
Disabiilty)

Consistent
Answers

36
Guarantee
Agencies

Lenders/
ServicersSchools

DCS

Tape Loader
ProcessSAIG

Modernization Partner Offices
Washington, DC

Accenture LAN

EDLAN

25 Development
Test

Workstations

Informatica Broker

Accenture Laptops

Router
170.248.221.1

Co m3

Switch

C om3

Switch

Firewall

FSA PIN Site

NT Domain Controller
IBM x232

ACDOE-DC1
170.248.222.18

Rational ClearQuest
Oracle 8i

HPV2
4.20.15.40

Interwoven
SU35E1

4.20.15.131

Rational ReqPro
NT 4.0 Compaq DL380

SFANT018
External 198.77.203.140
Intranet 4.20.17.246

Tape Backup Production
Environment

StorageTek 9310
9940B Tape Drives

Tape Loader Process
3480, 3490, 3420

PEPS

FMS

FP DataMart

Ombudsman

CPS
(Student Aid Eligibilty)

Figure 2, NSLDS II Development Execution Architecture

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 7 11/26/2002

Virtual Data Center
Meriden, CT

NSLDS II SYSTEM

MicroStrategy Environment

ITA WebSphere Environment

Tape Backup Production Environment

Modernization Partner Offices
Washington, DC

Informatica
Sun 3500
su35E18

4.20.17.152

DB2 EEE - Data Architecture Clustered
(4 each of the following):

FASTT 500 STORAGE SERVER
(50) 73.4 GB Hard Disk Drives
3.6 TB of raw storage RAID-5

IBM 6M1

FastT500
Disk array

MicroStrategy DB
Rational ClearQuest

Oracle 8i
HPV2

4.20.15.40

MicroStrategy
Intelligence Server

Compaq DL380
SFANT004
4.20.17.167

IHS Web Server
su35E10

4.20.17.144

Page 1

NSLDS II Production Environment
Wednesday, November 20, 2002

EDLAN

25 Development
Test

Workstations

Informatica Broker

Internet Access

ACS
Rockville, MD

DLSS
(Direct Loans)

TSYS
Columbus, GA

COD
(Disbursment)

Router
170.248.221.1

PEPS

FMS

FP DataMart

Ombudsman

Unknown Interfaces

TPD
(Total

Permant
Disabiilty)

Consistent
Answers

36
Guarantee
Agencies

Lenders/
Servicers

Schools

DCS

SAIG

IBM 6M1 IBM 6M1IBM 6M1

IBM Cluster Manager
Workstation

FastT500
Disk array

FastT500
Disk array

FastT500
Disk array

C IS COSY ST EMS SP1 Switch

MicroStrategy Web Server
Compaq DL380

SFANT002
4.20.17.158

MicroStrategy Web Server
Compaq DL380

SFANT003
4.20.17.159

Firewall
4.20.2.28
4.20.2.29

CISCO SYSTEM S

Load Balance
Servers

Network Dispatcher
CI SCOSYSTEM S

C ISCOSYSTEMS

Load Balance
Servers

Network Dispatcher

WebSphere
App Server
su35E13

4.20.17.147

WebSphere
App Server
su35E19

4.20.17.143

IHS Web Server
su35E12

4.20.17.146

EAI Bus Environment

EAI
SU35E3

4.20.17.137

EAI
SU35E14

4.20.17.176

Com3

Switch

Co m3

Switch

FSA PIN Site
SunGuard
Disaster

Recovery

NT Domain Controller
IBM x232

ACDOE-DC1
170.248.222.18

Accenture LAN

Accenture Laptops

DNS Servers 2
ob1.ed.gov

C I SC OSY ST EMS SP1 Switch

Interwoven
SU35E1

4.20.15.131
StorageTek 9310 Silo
9940B Tape Drives

Tape Loader Process
3480, 3490, 3420

CPS
(Student Aid Eligibilty)

Figure 3, NSLDS II Production Execution Architecture

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 9 11/26/2002

2.1 IBM Web Server and Application Server

The IBM Websphere Application Server (WAS v3.5) will be the deployment platform for the NSLDS II
web application. It provides the Java 2 Enterprise Edition (J2EE) standards support required for the
application architecture, as well as a scalable and robust run-time environment that will enable the
application to meet its reliability and performance requirements. It is also the web application
environment of choice for FSA.

J2EE standards that WAS support includes:

• JDK 1.2.2 compliance
• JSP 1.1 specification compliance
• Servlet 2.2 specification compliance
• JDBC 2.0 support (including connection pooling)

The IBM HTTP Server (IHS) web server provides for secure HTTP communications via Secure Sockets
Layer (SSL) 3.0 and supports up to 128bit encryption.

2.1.1 Directory Structure

ITA provides four standard environments:

• Development (DEV) – used by the application developers for development and unit testing
• Test (TST) – used for component and integration testing
• Staging (STG) – used for performance testing and production readiness review
• Production (PROD) – the fully tested and released application

The tables below show the standard directory structure for ITA supported applications on the shared
web server and application server. The development, test, and staging environments all run on the
same machines and share a standard directory structure. The production environments are load
balanced across multiple machines.

Directory Description
/www/dev1/nslds/servlets Location of servlets in the classpath.
/www/dev/nslds/web Location of dynamic content document root and JSPs.
/www/dev/nslds/web/WEB-INF Location of tag library descriptor files.
/www/dev/nslds/properties Location of *.properties files.
/www/dev/nslds/jars Location of jar files in classpath.
/opt/dev352/WebSphere/AppServer/log
s

Location of NSLDSstdout.log, NSLDSstderr.log, and
NSLDS_System.log files.

Table 1, Development Application Server (su35e5)

1 This path is the path to the files in the development environment, to access files in staging or test, the path
would be: /www/stg/nslds/ or /www/tst/nslds.
2 This path is the path to the files in the development environment, to access files in staging or test, the path
would be: /opt/stg35/ or /opt/tst35.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 10 11/26/2002

Directory Description
/www/dev/nslds/htdocs Location of static content document root, location of HTML files,

and PDF files.

Table 2, Development Web Server (su35e2)

In production, the application will reside on the web servers su35e10 and su35e12, and on the
application servers su35e9 and su35e13. The environment identifier will be removed from the
directory structure information (e.g. /www/nslds/servlets).

The NSLDS II development web application can be accessed from the following path:
http://dev.nslds.ed.gov:8531/NSLDSWebApp/*.jsp. To access other environments, replace dev with
stg or tst.

2.2 IBM DB2 EEE

IBM DB2 EEE v7.2 will be the database platform for the NSLDS II web application. It will be the
platform used for both the Enterprise Data Warehouse (EDW) and the Data Mart that MicroStrategy
will be querying against for reporting purposes. The web application will interact with the EDW while
MicroStrategy will query against the Data Mart. Please refer to the NSLDS II Reengineering Data
Architecture Detailed Design for additional information.

WAS version 3.5.5 supports DB2 Enterprise Edition 7.2 with FixPaks 4, 5, 6, and 7. FixPak 6 and above
is the recommended FixPak to resolve memory leak issues.

In order to configure WAS to access the DB2 databases, all access information (e.g. username,
password, port number) must be provided to ITA in the Application Questionnaire. The completed
questionnaire will be provided as Appendix A in this document.

2.3 Oracle

While the application data will be stored in the DB2 EDW and Data Mart, a shared Oracle instance
provided by ITA will also be used to user store session information.

The session information will be stored in the Sessions table of the default Oracle database and will
contain the session id and maximum inactive time defined for the application for that session.

Name Null Type Description
ID NOT NULL VARCHAR2(64) Session ID
PROPID NOT NULL VARCHAR2(64) Used by WAS
APPNAME VARCHAR2(64) Web application
LISTENERCNT NUMBER(38) Used by WAS
LASTACCESS NUMBER(38) Last session access time
CREATIONTIME NUMBER(38) Time session created
MAXINACTIVETIME NUMBER(38) Maximum session inactive time
USERNAME VARCHAR2(256) user name associated with the session
SMALL RAW(2000) Stores session data less than 2000

bytes

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 11 11/26/2002

Name Null Type Description
MEDIUM LONG RAW Stores session data between 2000

bytes and 2MB
LARGE RAW(1) Not supported by Oracle

Table 3, Sessions Table Description

2.4 Web Application Security

This section describes the security functionality of the NSLDS II web application, please reference the
Data Architecture Detailed Design for the overall NSLDS II security approach. The web application
security details the authentication of users to the web application and authorization of users to view
pages and perform functions.

2.4.1 User Authentication

The user logs onto the NSLDS II website by providing a user ID and password on the logon.jsp page.
The user ID and password are passed via an encrypted https request using SSL from the client’s
browser to the IHS server. The username will be stored in an encrypted column in DB2. An
algorithm will be used to compare the password entered by the user to the encrypted password stored
in the database. The data access layer, described in a later section of this document, will provide the
connection to the database and perform the logic to query the database. A logon Java object (an
architecture layer component) will contain the logic to access the data access layer, utilize the
algorithm, and compare the user-entered password and the database returned password for
authentication.

2.4.2 Web Authorization

User access to specific tabs, pages, and data field elements will be restricted through the use of
Location Groups, Function Groups and Web Groups. Location Groups define the specific location that
a user is logging in from (e.g. a University’s campus). Function Groups define what functionality a
user can perform (e.g. support staff functionality). Web Groups map web pages to specific function
groups (e.g. access to the Support tab).
A new field will be added into the database to support the ability to add new pages and associate
them with web groups. Each new page will have to be created and a menu will exist to create the new
page. Then the page will be associated with a web group. On the JSP, permission validation will
check if the user belongs to the defined web group.

2.4.3 Encryption

IHS supports 128bit SSL v3 and can be configured to support different variations of encryption level
support. The current NSLDS application checks the users’ browser to see if it supports 40bit, 56bit, or
128bit encryption. Currently, NSLDS supports all these levels of encryption, but it recommends using
a browser that supports 128bit encryption for users within the United States.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 12 11/26/2002

When the user logs on to the Student Access page a check on their browser is performed; if the
browser does not support 128bit encryption, the user is directed to a warning page specifying how to
upgrade their browser. The user is allowed to continue to the PIN site regardless of their encryption
level.

For the Financial Aid Professional (FAP) web site, the user must have a supported secure browser
(Microsoft Internet Explorer 4.x or higher or Netscape Navigator 4.x or higher) to access the site.

2.5 Reporting Engine Integration Strategy

MicroStrategy will be used as the Reports creation and delivery engine. It will interact with the Data
Mart to produce standard and ad hoc reports. The MicroStrategy interface will be accessible when the
user selects the Reports tab in the NSLDS II web application. This section defines the integration of
the web application with the reporting tool, (please reference the NSLDS II Reengineering Reports
Detailed Design for reporting specific information).

When the user clicks on the Reports tab, a new browser window is launched and a new session is
started on the MicroStrategy server. The following diagram depicts the way Single Sign On will occur
between MicroStrategy and the Web Application. The steps are outlined in more detail in the diagram
below.

DB2 EEE Cluster
(DataMart stores user and

password information)

MicroStrategy Web Servers
Compaq DL380

SFANT002
4.20.17.158
SFANT003
4.20.17.159

MicroStrategy
Intelligence Server

Compaq DL380
SFANT004
4.20.17.167

MicroStrategy DB
Rational ClearQuest

Oracle 8i
HPV2

4.20.15.40
(Stores MetaData)

IHS Web Servers
su35E10

4.20.17.144
su35E12

4.20.17.146

WebSphere
App Servers

su35E19
4.20.17.143

su35E13
4.20.17.147

4) Pass User ID
and Password

Firewalls
4.20.2.28
4.20.2.29

Users

1-2) User enters ID
and Password.
Sent via https

User ID and Password
Table Replicated

3) Checks User ID
and Password

against table in DB

5) Pass User ID
and Password

6) User ID and
Password Validation

Figure 4: MicroStrategy Single Sign on Authentication

1.) Users will enter their user ID and password on the Logon page.
2.) The user ID and password will be passed via an https request over SSL to the IHS web Server.
3.) WebSphere Application Server has an established connection with the EDW that allows the

web application to select the userID and password from the EDW, decrypt the password and
authenticate against the parameters entered.

4.) When a User clicks on the Reports Tab to create or access a report, the user ID and password
will be passed in a form via a JavaScript function to the desktop.asp file on the MicroStrategy

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 13 11/26/2002

IIS Web Server. (The Report Tab link will reference the MicroStrategy Web Server’s internal
Network Address Translation IP address. This will remove the need to send information
through the firewall and make encrypting the user information unnecessary.)

5.) The user ID and password are passed from the ASP file on the MicroStrategy Web Server to the
MicroStrategy Intelligence Server.

6.) The MicroStrategy Intelligence Server takes the user ID and password and checks it against the
MicroStrategy table in its Oracle database. (The user ID and password tables are replicated
from the EDW to the MicroStrategy database on a regular basis.)

7.) If the user ID and password exist, the MicroStrategy Home page is displayed in a separate
browser window. The user is now accessing MicroStrategy ASP files directly from the
MicroStrategy IIS Web Server. The requests are encrypted via SSL.

 FSA Modernization Program
NSLDS II Reengineering

SDD: Application Architecture

94.3.3 NSLDS II Detailed Design 14 11/26/2002

3 Business Layer Design

This section is comprised of the class diagram, object definition, sequence diagrams, and object-data
mapping model. The class diagram shows the different objects and how they are associated with each
other through aggregation, association, or inheritance. It also shows the multiplicity between objects
such as one Student can have one or many loans in NSLDS II.

The sequence diagrams illustrate the timing and interaction between methods in the different classes
that are called during the execution of a task. Due to time constraints and the numerous interactions
between the pages, only select example diagrams from each module are shown. These select examples
were chosen to reflect various actions within the system, such as update and add, to provide a more
diverse example set.

The object-data mapping spreadsheet (provided in Appendix B) maps objects from the system code to
the tables and attributes in the database. This spreadsheet contains only the objects and attributes
defined in the class diagram and preliminary mapping to the existing EDW data model. The object-
data mapping model is not complete, as the source documentation from the legacy system was not
provided in sufficient time for this function to be properly documented in this version of the design.
However, the complete mapping of objects to the logic present in the legacy COOL:Gen code is
included. This mapping provides a complete path from the objects defined in the data-mapping
model to the business logic for each screen.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 15 11/26/2002

3.1 Class Diagram
The classes in the diagram have been divided and placed across multiple pages for easier viewing. Some classes may appear in
more than one section to show the relationship of that class in relation to other classes on the same page, but only one definition of
the class will actually exist.

Message

messageID : String
startDt : Date
endDt : Date
priority : int
messageText : String
f unctionGroup : FunctionGroup

getMessage()
addMessage()
updateMessage()
deleteMessage()

(from nslds)

WebGroup

name : String
desc ription : String
webPage[] : String

getWebGroup()
updateWebGroup()
addWebGroup()
assignWebPage()
unas signWebPage()

(from nslds)

<<entity>>

LocationGroup

name : String
description : String

getLocationGroup()
updateLocationGroup()
addLocationGroup()

(from nslds)

FunctionGroup

name : String
description : String

getFunctionGroup()
updateFunctionGroup()
addFunctionGroup()
assignUser()
unassignUser()
assignWebGroup()
unassignWebGroup()

(from nslds)

1

0..n

1

0..n

OrganizationFactory

f actory : OrganizationFactory

getInstance()
createOrganization()

(from nslds)

ContactInf o

contactAddress1 : String
contactAddress2 : String
contactCity : String
contactEmail : String
contactExtension : String
contactFax : String
contactFaxExt : String
contactFirstName : String
contactFunction : String
contactLastName : String
contactLastUpdatedBy : String
contactPhone : String
contactState : Sring
contactTitle : String
contactUpdateDt : Date
contactType : String
contactURL : String
contactZip : String

getContactInf o()
updateContactInfo()
addContactInf o()

(from nslds)

User

userID : String
WANID : String
userFirstName : String
userLastName : String
organizationName : String
type : String
streetAddress : String
passwordHistory AL : Array List
city : String
state : String
zip : Integer
phoneNumber : String
extension : Integer
email : String
tapeFormat : String
statusIndicator : String
servicerOrgName : String
servicerWANID : String
servicerNSLDSID : String
splitIndicator : String
statusDt : Date
currentPassword : String

getUser()
addUser()
updateUser()
deleteUser()
assignFunctionGroup()
unassignFunctionGroup()

(from nslds)

1

1

1

1

1..n 11..n 1
Organization

orgCode : String
orgName : String
orgTy pe : String
orgStreet : String
orgCity : String
orgState : String
orgZip : String
orgStatus : String

(from nslds)

0..n

1..n

0..n

1..n0..n

1

0..n

1

1

0..n

1..n

1

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 16 11/26/2002

Lender

recordFormat : String
recordsReceived : String
status : String

getLenderInfo()
updateLoanList()
addLoanToList()
updateStudentList()
addStudentToList()
updateServicerList()
addServicerToList()
updateGAList()
addGAToList()

(from nsl...
Servicer

distributionSAIGUserID : String
lastChangedBy : String
alertDt : Date
recordFormat : String
recordsReceived : String
distributionMedium : String
SAIGMailbox : String

getServicerInfo()
updateLenderList()
updateSchoolList()

(from nsl...
GA

activityCode : String
nameAbbreviation : String
GANumber : String
distributionMedium : String
SAIGMailbox : String
recordFormat : String
recordsReceived : String
status : String

getGAInfo()
updateLoanList()
addLoanToList()

(from nsl...
School

academicCalendar : String
actionCode : Integer
actionReasonCode : Integer
approvalIndicator : Char
branchIndicator : Char
certificationType : Char
COACode : Char
COAEffectiveDt : Date
disapprovalDt : Date
effectiveDtOfCombination : Date
eligibilityStatus : Char
ethnicCode : Char
FDSLPEndReason
FDSLPOriginationEndReason
FDSLPOriginationLvl : Char
FDSLPPlusEndDt : Date
FDSLPPlusStartDt : Date
FDSLPStaffordEndDt : Date
FDSLPStaffordStartDt : Date
FDSLPUnsubsidizedEndDt : Date
FDSLPUnsubsidizedStartDt : Date
FFELPlusEndDt : Date
FFELPlusStartDt : Date
FFELStaffordEndDt : Date
FFELStaffordStartDt : Date
FFELStaffordUnsubsidizedEndDt : Date
FFELStaffordUnsubsidizedStartDt : Date
initialApprovalDt : Date
locationReason
OPEID : String
PellEndDt : Date
PellStartDt : Date
programLength : Char
regionCode : Integer
schoolType : Char
SEOGEndDt : Date
SEOGStartDt : Date
systemFundedOffice : Char
distributionMedium : String
SAIGUserID : String
servicerName : String
splitFileIndicator : Boolean
waiverAL : ArrayList
defaultSortOrder : String
SSCRType : Strintg
enrollmentReportingScheduleAL : ArrayList
status : String
programType : String

getSchoolInfo()
updateStudentList()
addStudentToList()
updateServicerList()
addServicerToList()
updateStatus()
updateGrantList()
addGrantToList()
getSSCRWaivedSchoolList()
getCDRInfo()

(from nsl...
ED

getEDInfo()
updateEdInfo()
addEdInfo()

(from nsl...
Sta te Agenc y

getStateAgencyIfno()
updateStateAgencyInfo()
addStateAgencyInfo()

(from nsl...

Organization

orgCode : String
orgName : String
orgType : String
orgStreet : String
orgCity : String
orgState : String
orgZip : String
orgStatus : String

(from nsl...

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 17 11/26/2002

Lender

recordFormat : String
recordsReceived : String...
s tatus : String

getLenderInfo()
updateLoanList()
addLoanToList()
updateStudentList()
addStudentToList()
updateServicerList()
addServicerToList()
updateGAList()
addGAToList()

(from nsl...

GA

activityCode : String
nameAbbreviation : String
GANumber : String
distributionMedium : String
SAIGMailbox : String
recordFormat : String
recordsReceived : String
status : String

getGAInfo()
updateLoanList()
addLoanToList()

(from nsl...

1..n
1..n

1..n
1..n

DataProvider

scheduledSubmitDt : Date
receivedDt : Date
processedDt : Date
loanRecordsExtracted
loansWithErrors

getDataProviderInfo()
calcSubmitPassRate()

(from nsl...

0..n

1

0..n

1

CohortDefaultRate

fiscalYear : Date
rateType : Char
rateSubType : Char
FFELNum : Integer
FFELDenom : Integer
CDRProcessDt : Date
CDRLenderStatus : Char...
DLNum : int
DLDenom : int
DualNum : int
DualDenom : int
num : int
denom : int

getCDRInfo()

(from nsl...

0..n

1

0..n

1

0..n

1

0..n

1

Servicer

d istribution SAIGUserID : String
la stChange dBy : Strin g
a lertDt : Da te
r ecordFormat : String
r ecordsRe ceived : String
d istribution Medium : String
S AIGMailbo x : String

g etService rInfo()
u pdateLen derList()
u pdateSch oolList()

(from nsl...1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

Submittal

provider : String
providerCode : String
submittalDt : Date
statusCode : String
number : Integer
updateDt : Date
pastEnrollmentRptAL : ArrayList
receivedDt : Date
scheduleAL : ArrayList
userID : String
messageKey : Stringt
effectiveDt : Date
frequency : String
week : String
dayOfWeek : String
transaction : String
action : String
scheduledDt : Date
comments : String
newScheduledDt : Date

getSubmittalInfo()
updateSubmittalInfo()
getSubmittalScheduleInfo()
addSubmittalScheduleDt()
changeSubmittalScheduleDt()

(from nsl...

0..n

1

0..n

1

0..n

1

0..n

1

School

academicCalendar : String
actionCode : Integer
actionReasonCode : Integer
approvalIndicator : Char
branchIndicator : Char
certificationType : Char
COACode : Char
COAEffectiveDt : Date
disapprovalDt : Date
effectiveDtOfCombination : Date
eligibilityStatus : Char
ethnicCode : Char
FDSLPEndReason
FDSLPOriginationEndReason
FDSLPOriginationLvl : Char
FDSLPPlusEndDt : Date
FDSLPPlusStartDt : Date
FDSLPStaffordEndDt : Date
FDSLPStaffordStartDt : Date
FDSLPUnsubsidizedEndDt : Date
FDSLPUnsubsidizedStartDt : Date
FFELPlusEndDt : Date
FFELPlusStartDt : Date
FFELStaffordEndDt : Date
FFELStaffordStartDt : Date
FFELStaffordUnsubsidizedEndDt : Date
FFELStaffordUnsubsidizedStartDt : Date
initialApprovalDt : Date
locationReason
OPEID : String
PellEndDt : Date
PellStartDt : Date
programLength : Char
regionCode : Integer
schoolType : Char
SEOGEndDt : Date
SEOGStartDt : Date
systemFundedOffice : Char
distributionMedium : String
SAIGUserID : String
servicerName : String
splitFileIndicator : Boolean
waiverAL : ArrayList
defaultSortOrder : String
SSCRType : Strintg
enrollmentReportingScheduleAL : ArrayList...
s tatus : String
programType : String

getSchoolInfo()
updateStudentList()
addStudentToList()
updateServicerList()
addServicerToList()
updateStatus()
updateGrantList()
addGrantToList()
getSSCRWaivedSchoolList()
getCDRInfo()

(from nsl...

0..n
1

0..n
1

0..n

1

0..n

1

0..n

1

0..n

1

0..n

11

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 18 11/26/2002

Student

academicLevel : String
hasPellGrant : Boolean
enrollmentDetailAL : ArrayList
enrollmentTimelineAL : ArrayList

getStudentInfo()
addStudentTransfer()
removeStudentTransfer()

(from nslds)

TransferMonitor

informServicerFlag : Boolean
alertMethod : String
alertServi cerFlag : Boolean
monitorBeginDt : Date
lastChangedByName : String
lastChangedByDt : Date
dtAlerted : Date
batchAlertMethod : String
informSAIGMbox : String
alertSAIGMbox : String
monitorRsltDt : Date

getSchoolInfo()
getContactInfo()
updateSchoolTransProfile()
addStudentToList()
addSchoolTransProfile()
updateStudentOnList ()

(from nslds)

School

academicCalendar : String
actionCode : Integer
actionReasonCode : Integer
approvalIndicator : Char
branchIndicator : Char
certificationType : Char
COACode : Char
COAEffectiveDt : Da te
disapprovalDt : Date
effectiveDtOfCombination : Date
eligibilityStatus : Char
ethnicCode : Char
FDSLPEndReason
FDSLPOriginationEndReason
FDSLPOriginationLvl : Char
FDSLPPlusEndDt : Date
FDSLPPlusStartDt : Date
FDSLPStaffordEndDt : Date
FDSLPStaffordStartDt : Date
FDSLPUnsubsidizedEndDt : Date
FDSLPUnsubsidizedStartDt : Date
FFELPlusEnd Dt : Date
FFELPlusStartDt : Date
FFELStaffordEndDt : Date
FFELStaffordStartDt : Date
FFELStaffordUnsubsidizedEndDt : Date
FFELStaffordUnsubsidizedStartDt : Date
initialApprovalDt : Date
locationReason
OPEID : String
PellEndDt : Date
PellStartDt : Date
programLength : Char
regionCode : Integer
schoolType : Char
SEOGEndDt : Date
SEOGStartDt : Date
systemFundedOffice : Char
distributionMedium : String
SAIGUserID : String
servicerName : String
splitFileIndicator : Boolean
waiverAL : ArrayList
defaultSortOrder : String
SSCRType : Strintg
enrollmentReportingScheduleAL : ArrayList
status : String
programType : String

getSchoolInfo()
updateStudentList()
addStudentToList()
updateServicerList()
addServicerToList()
updateStatus()
updateGrantList()
addGrantToList()
getSSCRWai vedSchoolList()
getCDRInfo()

(from nslds)

RepaymentInfo

numDtRange : Date
denomDtRange : Date
FFELNum : Integer
FFELDenom : Integer
DLNum : Integer
DLDenom : Integer
DualNum : Integer
DualDenom : Integer
ProcessedDt : Date

calcFFELRate()
calcDLRate()
calcDualRate()
getRepaymentInfo()

(from nslds)

<<entity>>

ViewDateControl

fiscalYear : Date
rateType : String
runDate : Date
viewAvailDate : Date

getVDCInfo()
updateVDCInfo()

(from ns lds)

<<entity>>

0..n

0 ..n

0..1

0..n

0..n

0..n

1

1

11 0..1

1..n

0 ..n

1..n

0..n0..n

1

1..n1..n

1

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 19 11/26/2002

P lusBorrower

getPlusBorrowerInfo()

(from nslds)

Overpaymen t

type : String
indicator : String
disbursementDt : Date
repaymentDt : Date
creationDt : Date
source : String
schoolOPEID : String
updateDt : Date
updatedBy : String
borrowerSSN : String
borrowerDOB : Date
borrowerFirstName : String
regionCode
status : String

addOverpaymentInfo()
getOverpaymentInfo()
updateOverpaymentInfo()

(from nslds)

Borrower

SSN : String
firstName : String
middleInitial : String
lastName : String
DOB : Date
borrowerType : String
currentFlag : Boolean
studentDesignator : String

certifyStudent()
updateStudentEnrollmentInfo()
getStudentEnrollmentInfo()

(from nslds)

Grant

a wardYearBegin : Date
a wardYearEnd : Date
sche dul edAmt : Integer
a wardAm t : Integer
disbursedAm t : Integer
remainingAmt : Integer
percentScheduledUsed : Double
type : Stri ng
disburse me ntDt : Da te
transactionNumber : Integer
disburse me ntPostDt : Date
e xpectedFamCont : Integer
scho ol VerificationFlag : Boolean
scho olOPEID : S tring

getGran tInfo()
updateGrantInfo()
addGrantInfo()

(from ns lds)

Student

a cademicLevel : String
hasPellGrant : Bool ean
enro llm entDetai lAL : ArrayList
enro llm entTimelineAL : ArrayLi st

getStudentInfo()
addStudentT ransfer()
removeStudentTransfer()

(from nslds)

Loan

academicLevel : Char
bankruptcyClaimRefundAL : ArrayList
cancellationAL : ArrayList
cancellationType : String
capitalizedIntAmtAccrued : Integer
capitalizedIntUpdateDt : Date
collectionAL : ArrayList
defermentsAL : ArrayList
disbursementAL : ArrayList
DPLoanID : String
guarantorHistoryAL : ArrayList
inactiveFlag : Boolean
insClaimPymtAL : ArrayList
insClaimRefundAL : ArrayList
interestRate : Float
interestRateType : String
loanStatusChgAL : ArrayList
MPNCode : String
notes : String
OPBAmtDue
OPBUpdateDt : Date
OPEID : Integer
originationDt : Date
originationAmt : Integer
otherFeesAmt : Integer
outstandingIntAmtAccrued : Integer
outstandingIntUpdateDt : Date
periodBeginDt : Date
periodEndDt : Date
refundsAL : ArrayList
reinsuranceClaimPymtAL : ArrayList
repaymentStartDt : Date
repurchaseAmtAL : ArrayList
sepLoanFlag : Boolean
subsidizedFlag : Boolean
subsidizedOPBAmtUsed : Integer
supplReinsPymtReqAL : ArrayList
TOPAL : ArrayList
type : String
loanLockDt : Date

getLoanInfo()
updateLoanInfo()
addLoanInfo()
setUpdateableFlag()
isUpdatable()
sendAlert()

(from nslds)

0..n

1

0..n

1

1..n

0..n

1

0..n

1

11

1..n

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 20 11/26/2002

LoanType

code : String
name : String
creationDt : Date
group : String

getLoanType()
addLoanType()
updateLoanType()
deleteLoanType()

(from nslds)Organization

orgCode : String
orgName : String
orgType : String
orgStreet : String
orgCity : String
orgState : String
orgZip : String
orgStatus : String

(from nslds)

Loan

academicLevel : Char
bankruptcyClaimRefundAL : ArrayList
cancellationAL : ArrayList
cancellationType : String
capitalizedIntAmtAccrued : Integer
capitalizedIntUpdateDt : Date
collectionAL : ArrayList
defermentsAL : ArrayList
disbursementAL : ArrayList
DPLoanID : String
guarantorHistoryAL : ArrayList
inactiveFlag : Boolean
insClaimPymtAL : ArrayList
insClaimRefundAL : ArrayList
interestRate : Float
interestRateType : String
loanStatusChgAL : ArrayList
MPNCode : String
notes : String
OPBAmtDue
OPBUpdateDt : Date
OPEID : Integer
originationDt : Date
originationAmt : Integer
otherFeesAmt : Integer
outstandingIntAmtAccrued : Integer
outstandingIntUpdateDt : Date
periodBeginDt : Date
periodEndDt : Date
refundsAL : ArrayList
reinsuranceClaimPymtAL : ArrayList
repaymentStartDt : Date
repurchaseAmtAL : ArrayList
sepLoanFlag : Boolean
subsidizedFlag : Boolean
subsidizedOPBAmtUsed : Integer
supplReinsPymtReqAL : ArrayList
TOPAL : ArrayList
type : String
loanLockDt : Date

getLoanInfo()
updateLoanInfo()
addLoanInfo()
setUpdateableFlag()
isUpdatable()
sendAlert()

(from nslds)

NSLDS Updatable

updateFlag : Boolean

isUp datable()
setUpdatableFlag()

(from nslds)

<<Interface>>

LookupType

name : String
ID : String
result : String

getLookupResult()
addLookupType()
updateLookupType()

(from nslds)

<<entity>>

1

1

0 ..n1 0 ..n

111

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 21 11/26/2002

The Action object and NSLDSAction classes are concrete classes that individual business Action subclasses will extend. A business
Action subclass will be created for every page in the web site that perform business logic. Due to timing constraints, not all
subclasses were displayed; one main subclass for each module is shown to demonstrate the inheritance relationship and act as a
placeholder for business actions in that module.

N SLDSAction

perf orm()

(f rom nslds)

LogonAction

execute()

(from nslds)

MenuAction

execute()

(from nslds)

AidAction

ex ec ute()

(from nslds)

OrgAction

execute()

(from nslds)

EnrollmentAction

execute()

(from nslds)

SupportAction

execute()

(from nslds)

StudentAccessAction

execute()

(from nslds)

Transf erMonitorAction

execute()

(from nslds)

Action

perf orm()

(from action)

OverpaymentAct ion

execute()

(from nslds)

EnrollmentSummary Action

execute()

(from nslds)

EnrollmentReportingAction

execute()

(f rom nslds)

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 22 11/26/2002

The Worker object is an abstract class implemented by subclassed Worker objects. The Worker class interacts with the
Configuration framework and instantiates a protected member variable for the PersistableObjectManager for the Worker subclasses
to utilize. For every Action that requires database interaction, there will be a subclassed Worker object. Due to timing constraints,
not all subclasses were displayed; one main subclass for each module is shown to demonstrate the inheritance relationship and act
as a placeholder for business actions in that module.

StudentAccessWorker

delete()
insert()
select()
update()

(from nsl...
TransferMonitorWorker

delete()
insert()
select()
update()

(from nsl...
LogonWorker

authenticate()...
delete()
insert()
select()
update()

(from nsl...

MenuWorker

delete()
insert()
select()
update()

(from nsl...
AidWorker

delete()
insert()
select()
update()...

(from nsl...

OrgWorker

delete()
insert()
select()
update()

(from nsl...

EnrollmentWorker

delete()
insert()
select()
update()

(from nsl...

SupportWorker

delete()
insert()
select()
update()

(from nsl...

WorkUnit

isSuccessfu l()
ge tResults()
se tResults()
se tSuccess ful()

(from nsl...

Worker

workUnit : WorkUnit
domain : SFADomain
pom : SFAPers istableObjectManager...

delete()
insert()
select()
update()

(from nsl...

11

Overpaymen
tWorker

delete()
insert()
select()
update()

(from nsl...

EnrollmentSummaryWorker

delete()
insert()
select()
update()

(from nsl...

EnrollmentReportingWorker

delete()
insert()
select()
update()

(from nsl...

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 23 11/26/2002

ISFAPers is tableMapper

getDeleteQuery()
getInsertQuery()
getKeySelectQuery()
getSelectQuery()
getUpdateQuery()
newFrom()
populateAttributeValues()
populateKeyAttributeValues()...

(from persisten...

<<Interface>>

SFADomain

dataSourceName : String...
userName : String
password : String

(from persisten...

SFAPersistableObjectManager

transaction : SFAUnitOfWork

abortTransaction()
addObject()
commitTransaction()
endTransaction()
getObject()
getObjects()
getObjectsAsHashtable()
removeObject()
removeObjects()
updateObject()
updateObjects()

(from persisten... SFAResultSet

recordSet : ResultSet...

close()
getBoolean()
getDate()
getFloat()
getInt()
getLong()
getObject()
getString()
next()

(from persisten...

SFAUnitOfWork

connection : Connection...

abort()
commit()
end()
executeQuery()
executeUpdate()

(from persisten...

11

LogonMapper

user : User

getDeleteQuery()
getInsertQuery()
getKeySelectQuery()
getSelectQuery()
getUpdateQuery()
newFrom()
populateAttributeValues()
populateKeyAttributeValues()...

(from nsl...

LoanDetailsMapper

borrower : Borrower

getDeleteQuery()
getInsertQuery()
getKeySelectQuery()
getSelectQuery()
getUpdateQuery()
newFrom()
populateAttributeValues()
populateKeyAttributeValues()...

(from nsl...

OrgContactListDetailsMapper

org : Organization

getDeleteQuery()
getInsertQuery()
getKeySelectQuery()
getSelectQuery()
getUpdateQuery()
newFrom()
populateAttributeValues()
populateKeyAttributeValues()...

(from nsl...

EnrollmentReportingMapper

org : Organiza tion

getD eleteQue ry()
getIn sertQuer y()
getKeySelectQ uery()
getSelectQuer y()
getU pdateQue ry()
new From()
pop ulateAttribu teValues()
pop ulateKeyAttributeValu es()...

(from nsl...

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 24 11/26/2002

These reports objects are for the generation of formatted flat file exception reports which are defined in the NSLDS II Reengineering
Reports Detailed Design documentation.

Schoo lRepaym entReportWri ter

writeReport()

(from nslds)

CDRHistoryReportWriter

writeReport()

(from nslds)

ReportReader

sel ect()

(from nslds)

ReportWriterFactory

createReportWriter()

(from nslds)

ReportGenerator

generateRe port()

(from nslds)

File
(from nslds)

ReportWriter

writeReport()

(from nslds)

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 25 11/26/2002

3.2 Object Actions
The table below lists the major actions that will be performed by the objects defined in the class
diagram. There are two categories of objects defined by the NSLDS Application Architecture –
business objects and business workers.

Business objects contain the informational fields used to hold the NSLDS data. Business worker
objects contain specialized methods used to operate on the business objects to perform a NSLDS
action, usually in coordination with the database. All worker classes are able to select, insert, update,
and delete records from the database. Some workers have methods to perform more specific business
logic, such as authentication. The workers use the business objects as placeholders for the NSLDS data
when performing actions on the database. The business objects also contain methods that allow them
to operate on themselves. Business objects are able to execute calculations and business logic based on
the values contained in their fields. The following table lists the actions exposed by the business
objects and general worker objects.

Business Object Name Description Action
ContactInfo Represents an Organization's

contact or support personnel’s
contact information.

getContactInfo
updateContactInfo
addContactInfo

Lender Represents the entity that lends
money to the Borrower. Keeps
track of the Students, Loans,
Servicers, and GAs for those
loans.

getLenderInfo
updateLoanList
addLoanToList
updateStudentList
addStudentToList
updateServicerList
addServicerToList
updateGAList
addGAToList

Servicer Represent the entity that
services enrollment information
for Schools and Loan
information for Lenders.

getServicerInfo
updateLenderList
updateSchoolList

ED Represents different Education
Regions.

getEDInfo
updateEDInfo
addEDInfo

State Agency Represents a particular State
Agency.

getStateAgencyInfo
updateStateAgencyInfo
addStateAgencyInfo

GA Entity that guarantees financial
backing of a loan. Used for
performing online loan updates.

getGAInfo
updateLoanList
addLoanToList

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 26 11/26/2002

Business Object Name Description Action
School Entity representing a school.

Contains a list of current
students and grants disbursed.
It is also used to monitor
transferring students.

getSchoolInfo
updateStudentList
addStudentToList
updateServicerList
addServicerToList
updateStatus
updateGrantList
addGrantToList
getSSCRWaivedSchoolList
getCDRInfo

TransferMonitor Entity used to track transfering
students for an associated
school.

getSchoolInfo
getContactInfo
updateSchoolTransProfile
addStudentToList
addSchoolTransProfile
udpateStudentOnList

RepaymentInfo Associated with the School
class. Able to calculate the rates
of repayment for the loans.

calcFFELRate
calcDLRate
calcDualRate
getRepaymentInfo

DataProvider Extracts loan data and
populates School and GA
objects.

getDataProviderInfo
calcSubmitPassRate

CohortDefaultRate Entity to store CDR information. getCDRInfo
Submittal Data Provider stores schedule

information for Schools, GAs,
Lenders, and Servicers.

getSubmittalInfo
updateSubmittalInfo
getSubmittalScheduleInfo
addSubmittalScheduleDt
changeSubmittalScheduleDt

ViewDateControl Entity to store VDC
information.

getVDCInfo
updateVDCInfo

User Represents the User on the
NSLDS system. User object
created during logon action.
Object's properties used to
authenicate logon process. A
User belongs to a function and
location group.

getUser
addUser
updateUser
deleteUser
assignFunctionGroup
unassignFunctionGroup

LocationGroup The physical location of the
User.

getLocationGroup
addLocationGroup
updateLocationGroup

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 27 11/26/2002

Business Object Name Description Action
FunctionGroup Used to authorize User for

functionality of the NSLDS site.
A function group can have
many web groups related to it.

getFunctionGroup
updateFunctionGroup
addFunctionGroup
assignUser
unassignUser
assignWebGroup
unassignWebGroup

Message Represent messages to the User.
Can be assigned to different
Function groups. User is able to
view more than one at a time.

getMessage
addMessage
updateMessage
deleteMessage

WebGroup User's authorization drilled
down to the web page level.

getWebGroup
updateWebGroup
addWebGroup
assignWebPage
unassignWebPage

Borrower Represents an entity that has
borrowed money. It contains
the records for Overpayment,
Loan, and Grant history. It is
used to update and display the
financial history.

certifyStudent
updateStudentEnrollmentInfo
getStudentEnrollmentInfo

Student A subclass of Borrower. A
Student belongs to a School. It
contains enrollment information
for a list of schools and grant
details.

getStudentInfo
addStudentInfo
removeStudentTransfer

PlusBorrower A subclass of Borrower.
Represents an entity that has
borrowed money on behalf of a
Student.

getPlusBorrowerInfo

Grant Entity used to store Grant
information.

getGrantInfo
updateGrantInfo
addGrantInfo

Overpayment Represents an Overpayment by
a Borrower on a loan.

getOverpaymentInfo
updateOverpaymentInfo
addOverpaymentInfo

Loan Contains all of the necessary
information for a loan. A loan
belongs to a Borrower. A loan is
associated with a LoanType.

getLoanInfo
updateLoanInfo
addLoanInfo
setUpdateableFlag
isUpdatable
sendAlert

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 28 11/26/2002

Business Object Name Description Action
LoanType Describes the type of loan. getLoanType

addLoanType
updateLoanType
deleteLoanType

LookupType Maintains validation translation
relationships.

getLookupType
addLookupType
updateLookupType

NSLDSAction Subclass of the Action class.
Parent class to all NSLDS
actions. Entry point for the
business action. Contains the
centralized exception handling
logic. This object will call the
execute() method of the other
Action objects.

perform

Worker Parent class for all NSLDS
business workers. This is an
abstract class and cannot be
instantiated. Defines the
required methods for all Worker
classes. Contains a WorkUnit
object that is used to return the
results of the work.

delete
insert
select
update

WorkUnit Used to record the results of the
operation of a Worker class.

isSuccessful
setSuccessful
getResults
setResults

ISFAPersistableMapper Part of the Persistence
framework. Interface that all
business mappers must
implement. Contains logic for
the object-data model mapping.

getDeleteQuery
getInsertQuery
getKeySelectQuery
getSelectQuery
getUpdateQuery
populateAttributeValues
populateKeyAttributeValues

SFADomain Part of the Persistence
framework. Placeholder class
for database's data source name,
user ID, and password which it
pulls from the Configuration
framework.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 29 11/26/2002

Business Object Name Description Action
SFAPersistableObjectManager Part of the Persistence

framework. Defines the
different database operations
exposed to the client objects.
Used to select, update, insert,
and delete records with the
database. Provides
transactional monitoring
through abort and commit
methods.

abortTransaction
addObject
commitTransaction
endTransaction
getObject
getObjects
getObjectsAsHashtable
removeObject
removeObjects
updateObject
updateObjects

SFAUnitOfWork Part of the Persistence
framework. This class is not
exposed to the developer. Used
internally in the Persistence
Framework to record a
roundtrip transaction.

abort
commit
end
executeQuery
executeUpdate

SFAResultSet Part of the Persistence
framework. This class is not
exposed to the developer. Used
internally in the Persistence
framework to record results
from database query.

close
getBoolean
getDate
getFloat
getInt
getLong
getObject
getString
next

ReportGenerator Control class to generate a
report File. Interacts with
ReportReader and
ReportWriter.

generateReport

ReportReader Reads from a database table all
of the report fields
coresponding to a Username +
timeStamp +Report ID label and
stores the data in a ResultSet.

select

ReportWriter Generates the output File.
While iterating through the
ResultSet from the
ReportReader, it writes the
report data and report headers.

writeReport

ReportWriterFactory Creates the specific
ReportWriter based on the
Report ID.

createReportWriter

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 30 11/26/2002

Table 4, Object Description and Actions

3.3 Sequence Diagrams
The Normal Processing category includes examples from the seven different business modules. The
Exception Processing has three diagrams that are examples of the different types of exceptional
conditions in the NSLDS system and how they are handled by the application architecture.

Normal Processing – Business Modules

• Aid - Update Loan Details
• Aid - View Loan History
• Aid - Update Overpayment Details
• Aid - View Overpayment History
• Enrollment - Add Reporting Schedule
• Enrollment - View Summary
• Logon
• Organization - View Contact List
• Organization - Delete Contact from List
• Student Access - View Financial Aid Review
• Support - View Contact List
• Support - Add Contact to List
• Transfer Monitor - View Transfer List
• Transfer Monitor - Delete Transfer from List

Exception Processing – Example sequences
• Application errors (i.e. Authentication error)
• Exceptions thrown by Java code (i.e. SQL Exception)
• Web Conversion framework errors (i.e. Form validation error)

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 31 11/26/2002

3.3.1 Aid - Update Loan Details

AidAction updates the
borrower object in the
session context using the
index number of the
selected Loan.

loanDetailsUpdate.jsp : ActionServlet : NSLDSAction : AidAction : WorkUnit : AidWorker : Loan : Borrower : LoanDetailsMapper : SFADomain : SFAPersistableObjectManager

1: process(request, response)

User updates Loan
Detail fields and
clicks Submit. All
Loan Detail fields
and the index
number of the Loan
are sent in the POST
request to
ActionServlet.

2: perform(mapping,
form, request,

response)

ActionServlet
calls perform()
method in
NSLDSAction

3: execute(mapping,
form, request,

response)

NSLDSAction
calls execute()
method in
AidAction

4: update(parameters)

AidAction calls the update()
method, passing the Loan fields
as a HashMap parameter.

5: loan = new Loan()

6: set Loan fields

Set all fields in
Loan object from
parameter
HashMap

7: borrower = new Borrower()

8: set Borrower Fields (SSN, Name, Date of Birth)

9: add loan object to borrower

10: mapper = new LoanDetailsMapper()

11: populateAttributeValues(borrower)

Populates attributes to perform a
SQL Update. Mapper uses borrower's
attributes to update the Loan Details.

14: domain = new SFADomain(dataSourceName, userID, password)

15: pom = new SFAPersistableObjectManager(domain)

16: updateObject(updateQuery, updateParameters)

AidWorker calls updateObject()
method and passes it the query
to use on the database. The
updateObject() method does not
return a value.

12: updateQuery = getUpdateQuery()

13: updateParameters = getUpdateParameters()

17: workUnit = new WorkUnit()

18: setSuccessful()

19: setResults()
AidWorker sets the
borrower object in
the WorkUnit

20: Return: WorkUnit

21: isSuccessful()

23: Return:
ActionForward

AidAction generates an
ActionForward page. If
update was successful, then
updated Loan Details page is
displayed.

24: Return: ActionForward

ActionForward
returned to
ActionServlet

25: loanDetails.jsp

22: getResults()

ActionServlet
redirects user to
loanDetails.jsp and
the updated Loan is
displayed.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 32 11/26/2002

3.3.2 Aid - View Loan History

aid.jsp ActionServlet : NSLDSAction : AidAction : WorkUnit : AidWorker : Borrower Persistence
Framework

1: process(request, response)

User enters a SSN
and leaves the First
Name and Date of
Birth blank and clicks
the Retrieve button.
POST request sent to
ActionServlet.

ActionServlet
calls perform()
method in
NSLDSAction

2: perform(mapping, form,
request, response)

3 : exe cute(mapping, form,
request, response)

NSLDSAction
calls execute()
method in
AidAction

4: select(parameters)

AidAction calls the
AidWorker business
logic, passing a
HashMap of the SSN,
First Name and Date of
Birth entered by the
User.

5: borrower = new Borrower()

6: setSSN(ssn)

7: setFirstName(firstName)

8: setDateOfBirth(DoB)

9: borrower = select Loan History Information (borrower)

AidWorker calls the Persistence Framework to
retrieve the Loan History from the database. The
Persistence Framework returns an updated
Borrower object, containing the loan history.

13: Return: WorkUnit

AidWorker
populates a
WorkUnit with
updated
Borrower Obj ect

14: isSucce ssful()

16: Return: ActionForward

AidAction
generates
ActionForward for
loan history page.

17: Return: ActionForward

ActionForward
re turned to
ActionServlet

18: loanHistory.jsp

ActionServlet maps
ActionForward to
loanHistory.jsp page.
loanHistory.jsp page
reads Borrower object
from Session context
and displays the
Borrower's loan
history.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

15: getResults()

AidAction
retrieves results
from WorkUnit
and sets
Borrower object
in Session
context.

10: workUni t = new WorkUnit()

11: se tSu cce ssful()

12: setResults()

Updated
borrower object
set in WorkUnit

See LogonAction for
more details about
u si ng Persistence
Framework to select
data.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 33 11/26/2002

3.3.3 Aid - Update Overpayment Details

OverpaymentWorker
sets the borrower
object in the WorkUnit

overpaymentDetail
Update.jsp

 : ActionServlet : NSLDSAction : OverpaymentAction : WorkUnit : OverpaymentWorker : Borrower : Overpayment Persistence
Framework

1: process(request, response)

User updates
Overpayment Detail
fields and clicks Submit.
 All fields and the index
number of the
Overpayment are sent in
the POST request to
ActionServlet.

2: perform(mapping,
form, request,

response)

ActionServlet
calls perform()
method in
NSLDSActi on

3: execute(mapping,
form, request,

response)

NSLDSAction calls
execute() method in
OverpaymentAction

4: update(parameters)

AidAction calls the update()
method, passing the
Overpayment fields and the
Borrowe r in formation as a
HashMap parameter.

5: overpmt = new Overpayment()

6: set Overpayment fields

Set all Overpayment
fields from HashMap
parameter.

7: borrower = new Borrower()

8 : se t Borrower fields(SSN, firstName, DoB)

9: addOverpayment(overpmt)

10: update Overpayment (borrower)

OverpaymentWorker calls the
update() method in the
Persistence framework. It
passes the Borrower object
that includes the
Overpayment to update.

See
LoanDetailsUpdate
Action for more
details about using
Persistence
Framework to
update data.

11: workUnit = new WorkUnit()

12: setSuccessful()
13: setResults()

14: Return: WorkUnit

15: isSuccessful()

OverpaymentAction retrieves
Borrower object from
WorkUnit. Using the index of
the selected Overpayment,
the Borrower object from the
Session context is updated.

17: Return: Acti onForward

OverpaymentActio
n generates
ActionForward for
overpaymentDetail
.jsp page

18: Return: ActionForward

ActionForward
returned to
ActionServlet

19: overpaymentDetail.jsp

ActionServlet
redirects user to
overpaymentDetails.
jsp and the updated
Overpayment is
displayed.

16: getResults()

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 34 11/26/2002

3.3.4 Aid - View Overpayment History

overpaymentHistory.
jsp

 : ActionServlet : NSLDSAction : OverpaymentAction : WorkUnit : OverpaymentWorker : Borrower Persistence
Framework

1: process(request, response)

User enters SSN,
First Name, and DoB
on Overpayment
History page and
clicks Submit.
POST request sent
to ActionServlet.

ActionServlet
calls perform()
method in
NSLDSAction

2: perform(mapping,
form, request,

response) 3: execute(mapping,
form, request,

response)

NSLDSAction calls
execute() method in
OverpaymentAction

4: select(parameters)

Action calls Workers
business l ogi c to select
data, passing it the SSN,
First Nam e, and DoB as a
Ha shMap parameter

5: borrower = new Borrower()

6: setSSN(ssn)
7: setFirstName(firstName)

8: setDateOfBirth(DoB)

9: borrower = select Overpayment History (borrower)

OverpaymentWorker calls
the Persistence Framework
to retrieve the Overpaym ent
History from the database.
The Persi stence Framework
returns an updated Borrower
object, containing the
Overpayment history. See
the LogonAction for more
details on retrieving data
with the Persistence
Fra mework.

10: workUnit = new WorkUnit()

12: setSuccessful()

11: setResults()

Updated
borrower object
set in WorkUnit

13: Return: WorkUnit

OverpaymentWorker
populates a WorkUnit with
updated Borrower Object

14: isSuccessful()
15: getResults()

OverpaymentAction
retrieves results from
WorkUnit and sets
Borrower object in
Session context.

16: Return: ActionForward

OverpaymentAction
generates
ActionForward for
overpayment history
page.

17: Return: ActionForward

ActionForward
returned to
ActionServlet

See LogonAction for
more details about
using Persistence
Framework to select
data.

18: overpaymentHistoryList.jsp

ActionServlet maps
ActionForward to
o verpaymentHistory
L ist.j sp page. JSP
page reads Borrower
object from Session
context and displays
the Borrower's
o verpayment history.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 35 11/26/2002

3.3.5 Enrollment - Add Reporting Schedule

enrollmentReporting
Create.jsp

ActionServlet : NSLDSAction : EnrollmentReportingAction : WorkUnit : EnrollmentReportingWorker : OrganizationFactory : School : EnrollmentReportingMapper : SFADomain : SFAPersistableObjectManager

1: process(request, response)

User enters reporting
start date and
frequency. Reporting
values and Org
Name, Code, and
Type sent via a
POST request to
ActionServlet.

2: perform(mapping,
form, request,

re sponse)

ActionServlet
calls perform()
method in
NSLDSAction

3: execute(mapping,
fo rm, request,

response)

NSLDSAction calls
execute() method in
EnrollmentReporting
Action

4: insert(parameters)

Action calls the Worker's
business logic, passing a
HashMap of the Org
information and the
reporting info entered by
the User.

5: org =
createOrganization(type)

Use factory to create
a new Org -
Type = School

6: org = new School()
7: Return: School

8 : se t Org fields (name, code)

Populate Org fields
in School object

9: set Reporting fields (startDate, frequency)

10: mapper = new EnrollmentReportingMapper()

11: populateAttributeValues(school)

12: insertQuery = getInsertQuery()

13: insertParameters = getInsertParameters()

10-1 3. Setup
mapper and get SQL
statement to insert
Reporting Schedule

14: domain = new SFADomain(dataSource, userID, passwd)

15: pom = new PersistableObjectManager(domain)

16: addObject(insertQuery, insertParameters) Call to addObject()
inserts the new
Reporting entry into the
Reporting Schedule. No
values are returned.

17: workUni t = new WorkUnit()

18: setSuccessful()

19: setResults()

School object set
as the result in
the WorkUnit.

20: Return: WorkUnit

21: isSuccessful()

22: getResults()

Action retrieves the new
Reporting entry from the
WorkUnit and adds it to
the Reporting Schedule in
the School object stored
in the Session Context.

23: Return: ActionForward

Action generates
ActionForward for
enrollment reporting
page.

24: Return: ActionForward

ActionForward
returned to
ActionServlet

25: enrollmentReporting.jsp

ActionServlet maps
ActionForward to
enrollmentReporting.jsp
page. JSP page reads
School object from
Session context and
displays the Enrollment
Reporting Schedule.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 36 11/26/2002

3.3.6 Enrollment - View Summary

enrollment.jsp ActionServlet : NSLDSAction : EnrollmentSummaryAction : WorkUnit : EnrollmentSummaryWorker : Student Persistence
Framework

1: process(request, response)

User enters a SSN
and leaves the First
Name and Date of
Birth blank and clicks
the Retrieve button.
POST request sent to
ActionServlet.

2: perfo rm(mapping,
form, request,

response)

ActionServlet
calls perform()
method in
NSLDSAction

3: execute(mapping,
form, request,

response)

NSLDSActi on call s
execute () me tho d in
En rollmentSummary
Action

4: select(parameters)

Action calls the Worker's
business l ogi c, passing a
HashMap of the SSN,
First Nam e and Date of
Birth entered by the User.

5 : student = new Student()

6: setSSN(ssn)

7: setFirstName(firstName)

8: setDateOfBirth(DoB)

9: student = select Enrollment Data (student)

See LogonAction for
more details about
using Persistence
Framework to select
data.

EnrollmentSummaryWorker calls the
Persistence Framework to retrieve
the Enrollment Summary from the
database. The Persistence
Framework returns an updated
Student object, containing the
Enrollment summary data.

10: workUnit = new WorkUnit()

11: setSuccessful()
12: setResults()

Updated Student
object is set as the
result of the WorkUnit13: Return: WorkUnit

14: isSuccessful()

15: getResults()

EnrollmentSumaryAction
retrieves the Student obj ect
and se ts the object in the
Session context.

16: Return: ActionForward

Action generates
ActionForward for
enrollment summary
page.

17: Return: ActionForward

ActionForward
returned to
ActionServl et

18: enrollmentSummary.jsp

ActionServlet maps
ActionForward to
enrollmentSummary.jsp
page. JSP page reads
Student object from
Session context and
displays the Student's
Enrollment Summary.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 37 11/26/2002

3.3.7 Logon

Logon.jsp Act ionServlet : NSLDSAction : LogonAct ion : LogonWorker : User : LogonMapper : SFADomain : SFAPersistableObjectManager : WorkUnit

1: process(request,response) 2: perform(mapping,
form, request,

response)

3: execute(mapping,
form, request,

re sp onse) 4: select(parameters)

18: Return: WorkUnit

21: Return: ActionForward

22: Return: ActionForward
23: mainMenu. jsp

User enters username
and password and
cl icks Submit. POST
request sent to
ActionServlet.

ActionServlet
calls perform()
m ethod in
NSLDSAction

LogonAct ion cal ls
LogonWorker's business
logic, passing the
User-entered username
and password in a
HashMap

14: authent icate()

LogonWorker checks to see if
query results are non-null
then compares the User
entered password to the
password from the database

LogonWorker
returns the results
a s a WorkUnit
ob ject

LogonAct ion
checks to see if
Work was
successful

A ctionForward is
m ainMenu. jsp i f
successful logon,
else logon.jsp

NSLDSAction
calls execute()
method in
LogonAct ion

5: user = new User()

6: setUserName(userName)

7: mapper = new LogonMapper()

8: populateKeyAttributesValues(user)

Populate at tr ibutes to perform SQL
SELECT statement

11: domain = new SFADomain(dataSource, userID, passwd)

12: pom = new SFAPersistableObjectManager(domain)

13: user = getObject(mapper, keySelectQuery, keySelectParameters)

Cal l to getObject
returns a User
object , updated
with the results of
the query.

If query returned no
results, then
getObject returns
nul l

ActionForward
returned to
Act ionServlet

ActionServlet
redirects the user to
mainMenu. jsp af ter
a successful logon
or back to logon.jsp
if unsuccessful

See Struts
Sequence d iagram
for more detai ls on
the process of
mapping *. jsp to
an Act ion

19: isSuccessful()

20: generateForward

LogonAct ion
generates the
ActionForward

9: keySelectQuery = getKeySelectQuery()

10: keySelectParameters = getKeySelectParamters()

15: workUnit = new WorkUnit()

16: setSuccessful()

17: setResults(User)

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 38 11/26/2002

3.3.8 Organization - View Contact List

orgSearch.jsp : ActionServlet : NSLDSAction : OrgAction : WorkUnit : OrgWorker : OrganizationFactory : State Agency Persistence
Framework

1: process(request, response)

User clicks on a result
from the Org Search
l ist. POST request
sent to ActionServlet
with Org Code, Name,
City, State, and
Type = State Agency

2: perform(mapping,
form, request,

response)

ActionServlet
calls perform()
method in
NSLDSAction

3: execute(mapping,
fo rm, request,

response)

NSLDSAction
calls execute()
method in
OrgAction

4: select(parameters)

OrgAction calls select()
method, passing Org
parameters - Type,
Code, Name, City,
State - as HashMap

5: org =
createOrganization(type)

Use factory to create
a new Org -
Type = State Agency

6: org = new
StateAgency()

7: Return: org =
StateAgency

8: set Code, Name, City, and State

9: org = select Contact Info for specified State Agency (org)

Populate Org fields
in StateAgency
object

OrgWorker uses
Persistence Framework to
sel ect the ContactInfo
data from the database.
A l ist of ContactInfo
objects is created and
stored in the updated
StateAgency object.

See LogonAction for
more details about
using Persistence
Framework to select
data.

10: workUnit = new WorkUnit()

11: setSuccessful()

12: setResults(org)

OrgWorker sets the
StateAgency object
in a new WorkUnit

13: Return: WorkUnit

14: i sSuccessful()
15: getResults()

OrgAction retrieves the
results from the
WorkUnit and places the
StateAgency object in
the Session context.

16: Return: ActionForward

OrgAction
generates an
ActionForward for
the Org Contact
List page

17: Return:
ActionForward

ActionForward
returned to
ActionServlet

18: orgContactList.jsp

ActionServlet redirects
User to the
orgContactList.jsp.
The JSP page reads
the Org object from
Session context and
displays the contact
l ist.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 39 11/26/2002

3.3.9 Organization - Delete Contact from List

orgContactListDelete.jsp : ActionServlet : NSLDSAction : OrgAction : Wo rkUnit : OrgWorker : OrgContactListDetailsMapper : SFADomain : SFAPersistableObjectManager

1: process(request, response)

User selected the
Contact to delete
and clicks the
Confirm button.
POST request sent
to ActionServlet with
the index of the
Contact to delete.

2: perform(mapping,
form, request,

response)
3: execute(mapping,

form, request,
response)

ActionServlet
calls perform()
method in
NSLDSActi on

NSLDSAction
calls execute()
method in
OrgAction

4: delete(parameters)

OrgAction calls the delete()
method passing the
Organization object from
the Session context and
the ContactInfo index as a
HashMap parameter.

5: create
Organization

Organization is cloned
and ContactInfo list is
populated with only
Contact to delete.

6: mapper = new OrgContactListDetailsMapper()

7: populateAttributeValues(organization)

Populate attributes to do a
SQL Delete. Mapper uses Org
and ContactInfo values to
select record to delete.

10: domain = new SFADomain(dataSourceName, userID, password)

11: pom = new SFAPersi stableObjectManager(domain)

12: removeObject(removeQuery, removeParams)

8: removeCondition = getDeleteQuery()

9: removeParams = getDeleteParameters()

OrgWorker calls
removeObject() to delete
the ContactInfo record. No
value is returned

13: delete ContactInfo

OrgWorker removes the deleted
ContactInfo entry fro m the
ori gi nal Organization object.

14: workUnit = new WorkUnit()

15: setSuccessful()

16: setResults()

OrgWorker sets the
updated Organization
object as the result of
the WorkUnit

17: Return: WorkUnit

18: isSuccessful()

19: getResults()

OrgAction retrieves the
updated Organization
object from the WorkUnit
and updates the object in
the session context.

20: Return:
ActionForward

OrgAction
generates an
ActionForward for
o rgContactList.jsp

21: Return:
ActionForward

ActionForward
returned to
ActionServlet

22: orgContactList.jsp

ActionServlet redirects
the user to the
orgContactList.jsp. The
JSP page displays the
updated Contact List,
with the previously
selected entry removed.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 40 11/26/2002

3.3.10 Student Access – View Financial Aid Review

Pin Request/
Information

ActionServlet : NSLDSAction : StudentAccessAction : WorkUn it : StudentAccessWorker : Borrower Persistence
Framework

1: process(request, respon se) 2: perform(mapping,
form, request,

response)
3: execute(mapping,

form, request,
response) 4: select(parameters)

5 : borrower = new Borrower()

6: setSSN(ssn)

7: setDateOfBirth(DoB)

8: borrower = select Financial History (borrower)

See LogonAction for
more details about
using Persistence
Framework to select
data.

9: workUnit = new WorkUni t ()

10: setSuccessful()

11: setResults()

12: Return: WorkUnit

13: isSuccessful()

14: getResults()
15: Return: ActionForward

16: Return: ActionForward

17: financialAidReview.jsp

User enters SSN,
date o f bi rth, and first
2 l et te rs o f la st name
and clicks the Submit
button. POST
request sent to
ActionServle t.

ActionServl et
cal ls perform()
me thod in
NSLDSActi on

NSLDSAction calls
execute() method in
StudentAccessAction

StudentAccessAction calls the
Worker's business logic, passing a
HashMap of the SSN and Date of
Birth entered by the User.

StudentAccessWorker uses
Persistence Framework to select
Loan, Grant, and Ove rpaym ent
Histo ry for thi s Borrower. Updated
Borrower object retu rned by
Framework, contai ning the
financial hi st ory.

Borro wer object
set as result in
WorkUni t.

Action retrieves
Bo rrower object from
WorkUnit and sets
object in Sessi on
context.

Action generates
ActionForward to
display the
borrower's financial
history.

ActionForward
returned to
ActionServletActionServl et maps

ActionForward to
fi nancialAidReview.jsp
page. JSP page reads
Borrower object from
Session context and
displays the Borrower's
fi nancial hi story.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 41 11/26/2002

3.3.11 Support – View Contact List

support.jsp : ActionServlet : NSLDSAction : SupportAction : WorkUnit : SupportWorker : OrganizationFactory : GA Persistence
Framework

1 : proce ss(request, response)

User enters an Org
Type=GA, an Org
Code and OrgName
and clicks Retrieve.
POST request sent to
ActionServlet with
parameters.

2: perform(mapping,
form, request,

response)

ActionServlet
calls perform()
method in
NSLDSAction

3: execute(mapping,
form, request,

response)

NSLDSActi on
calls execute()
method in
SupportAction

4 : select(pa rameters)

SupportAction calls
sel ect() meth od,
passing Org
parame te rs - Type ,
Code, Name - as
HashMap

5: org =
createOrganization(type)

Use factory to create
a new Org -
Type = GA

6: org = new GA()

7: Return: GA

8 : se t Org fields (code , name)

9: org = select Support Contact List (org)

SupportWorker uses the
Persistence Framework to
query the database. An
updated GA object is
returned, containing a
collection of ContactInfo
objects representing support
personnel.

See LogonAction for
more details about
using Persistence
Framework to select
data.

10: workUnit = new WorkUnit()

11: setSuccessful()

12: setResults()

Su pportWorker sets the
update GA obj ect as
the result in the
WorkUnit.

13: Return: WorkUnit

14: i sSuccessful()

15: getResults()

SupportAction retrieves
the GA object from the
WorkUnit and places it in
the Session Context.

16: Return: ActionForward

SupportAction
generates an
ActionForward object
for displaying the
external contact list.

17: Return: ActionForward

ActionForward
returned to
ActionServlet

18: externalContactLi st.jsp

ActionServlet
redirects user to
externalContactList.j
sp. JSP page reads
the GA object from
the Session context
and displays the
contact list.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 42 11/26/2002

3.3.12 Support – Add Contact to List

externalContactAdd.
jsp

 : ActionServlet : NSLDSAction : SupportAction : WorkUnit : SupportWorker : OrganizationFactory : GA : ContactInfo Persistence
Framework

1: process(request, response)

User navigates to
Contact Add page from
Contact List. User
enters info for a new
Contact and clicks
Submit. POST request
sent to ActionServlet
with Contact info and
the Organization it is to
be added to.

2 : perform(m apping,
form, request,

response)

ActionServlet
calls perform()
method in
NSLDSAction

3: execute(mapping,
form, request,

response)

NSLDSAction
calls execute()
method in
SupportAction

4: insert(parameters)

Action calls the Worke r's
business l ogic, passing a
HashMap of the Org
in formation and the
support contact info
entered by the User.

5: org =
createOrganization(type)

Use factory to create
a new Org -
Type = GA

6: org = new GA()

7: Return: GA

8: contactInfo = new ContactInfo()

9: set ContactInfo fields

10: add ContactInfo to GA

11: insert new ContactInfo record for this GA (org)

See EnrollmentReportingAddAction
for more details about using
Persistence Framework to insert data.

SupportWorker cal ls Pe rsistence
Framework to insert a n ew
Co ntact In fo reco rd. Persistence
Framework read the Co ntact In fo
data from the GA org o bj ect . No
values are returned.

12: workUnit = new WorkUnit()

13: setSuccessful()

14: setResults()

15: Return: WorkUnit

16: isSuccessful()

17: getResults()

18: Return: ActionForward

19: Return: ActionForward

20: externalContactDetail.jsp

Worker sets the
updated GA object as
the result in the
WorkUnit

Action retrieves GA object
from WorkUnit. The new
ContactInfo object is added
to the GA object in the
Session context.

Action generates
ActionForward for
the external contact
detail page.

ActionForward
returned to
ActionServlet

ActionServlet redirects
User to
externalContactDetail.
jsp page. JSP reads
the GA object from
Session context and
displays the new
support contact.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 43 11/26/2002

3.3.13 Transfer Monitor – View Transfer List

transferMonitor.jsp : ActionServlet : NSLDSActi on : TransferMonitorAction : WorkUnit : TransferMonitorWorker : OrganizationFactory : School Persistence
Framework

1: process(request, response) 2: perform(mapping,
form, request,

response)

3: execute(mapping,
form, request,

response) 4: select(parameters)
5: school =

createOrganization(type)
6: school = new School()

7: Return: School

8: set School fields (code, name)

9: school = select Transfer Monitor List (school)
10: workUnit = new WorkUnit()

11: setSuccessfu l()

12: setResu lts()

13: Return: WorkUnit

14: isSucce ssfu l()

15: getResults()
16: Return: ActionForward

17: Return: ActionForward

18: transferMonitorList.jsp

User clicks on the
Transfer Monitor List
link. POST request sent
to ActionServlet with
School information.

ActionServlet
calls perform ()
method in
NSLDSAction

NSLDSAction
calls execute()
method in
TransferMonitor
Action

Action calls the se lect ()
method in the Worker,
passing the School
information as a
HashMap parameter.

Use factory to create
a new Org -
Type = School

See LogonAction for
more details about
using Persistence
Framework to select
data.

Populate Org fields
in School object

TransferMonitorWorker call s the
Persistence Framework to select
the Transfer Monitor List
assoicated with the School
object. An updated School
object is returned, containing
the transfer list.

Worke r se ts the
updated School
object as the result of
the WorkUnit.

Action retrieves the
School object from the
WorkUnit and sets it in
the Session context.

Action generates
an ActionForward
to display the
Transfer list page .

ActionForward
returned to
ActionServlet

ActionServlet redirects
user to
transferMonitorList.j sp
page. JSP reads the
School object from
Session context and
d ispl ays the transfer
l i st .

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 44 11/26/2002

3.3.14 Transfer Monitor – Delete Transfer from List

studentMonitoring
Detail.jsp

 : ActionServlet : NSLDSAction : TransferMonitorAction : WorkUnit : TransferMonitorWorker Persistence
Framework

1: process(request, response) 2: perform(mapping,
form, request,

response)

3: execute(mapping,
form, request,

response) 4: delete(parameters)

5: crea te School

School is cloned and
TransferMonitor list is
populated with only
Transfer to delete.

6: delete Transfer record (school)

See OrgContactLi stDel ete fo r
more detai ls about using
Persistence Framework to
delete records.

7: delete Transfer

Worker removes the deleted
Transfer entry from the original
School object.

8: workUnit = new WorkUnit()

9: setSuccessful()

10: setResults()

11: Return: WorkUnit

12: isSucce ssful()

13: getResults()

14: Return: ActionForward

15: Return: ActionForward

16: transferMonitoringList.jsp

User selected the
Transfer to delete and
clicks the Confirm
button. POST request
sent to ActionServlet
with the index of the
Transfer student to
delete.

ActionServlet
calls perform()
method in
NSLDSAction

NSLDSAction
calls execute()
method in
TransferMonitor
Action

Action calls the delete()
method passing the School
object from the Session
context and the Transfer
student index as a
HashMap parameter.

Worker calls remove() method in
Persistence Framework to delete
Transfer student re cord.

Updated School
object set as
result.

Action retrieves the
School object from the
WorkUnit and sets it in
the Session context.

Action generates
an ActionForward
to di splay the
Transfer l ist page.

ActionForward
returned to
ActionServlet

ActionServlet redirects
user to
transferMonitorList.jsp
page. JSP reads the
School object from
Session context and
displays the transfer
l ist.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 45 11/26/2002

3.3.15 Application Error

Logon.jsp Act ionServ le t : N S L D S A c ti on : LogonAct ion : WorkUnit : LogonWorker : U se r P e rsi stence
Framework

Use r enters username
and password and
c l icks S u b m i t . P O S T
request sent to
Ac t ionServ le t .

Act ionServ let
cal ls perform()
m e t h o d i n
NSLDSAct ion

LogonAct ion ca l ls
LogonWorker's business
logic, passing the
User-entered username
and password in a
HashMap

LogonWorker compares the
User entered password to the
password f rom the database
and determines the
passwords do not match.

Act ionForward is
logon. jsp page fo r
an unsuccessful
logon.

NSLDSAct ion
cal ls execute()
m e t h o d i n
LogonAc t ion

Cal l to getObjec t
returns a User
ob jec t , upda ted
with the results of
the query.

Act ionForward
returned to
Ac t ionServ le t

See Struts
Sequence d iag ram
for more deta i ls on
the process of
mapp ing * . j sp to
an Ac t ion

LogonAc t ion
generates the
Act ionForward for the
i npu t page .

1: process(request,response)

18: logon. jsp

2: per fo rm(mapping,
form, request,

re spo n se)

17: Return: Act ionForward

3 : execu te (m a p p i n g ,
form, request,

response)

16: Return: Act ionForward

15: generateForward

4: select(parameters)

8: authent icate()

5: user = new User()

6: setUserName(userName)

9: workUnit = new WorkUnit()

10: setSuccessful(false)

7: user = select User info (user)

See LogonAct ion fo r
m o re d e ta i ls abo u t
u sing Persistence
F ra me work to select
d a t a .

11: setResults(User)

12: Return: WorkUnit

13: isSuccessful()

LogonWorker
returns the results
as a WorkUnit
ob jec t

LogonAct ion
de te rmines work was
not successful.

14: generateAct ionError

LogonAct ion creates an
Act ionError object wi th a
l ogon au then t i ca t ion
error message.

User is redirect
back to the
logon . j sp page and
the error message
is d isp layed.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 46 11/26/2002

3.3.16 Java Exceptions

Logon. jsp ActionServlet : NSLDSAction : LogonAction : LogonWorker : User : LogonMapper : SFADomain : SFAPersistableObjectManager : WorkUnit

User enters username
and password and
clicks Submit. POST
request sent to
ActionServlet.

ActionServlet
calls perform()
method in
NSLDSAction

LogonAction calls
LogonWorker's business
logic, passing the
User-entered username
and password in a
HashMap

LogonWorker stops normal
processing and propagates the
SFAException

NSLDSAction
calls execute()
method in
LogonAction

Populate attributes to perform SQL
SELECT statement

When executing
query, a
SQLException is
e n countered.
SQLException is
wrapped by a
SFAException and
thrown by the
P e rsistence
Manager.

NSLDSAction
creates an
ActionForwa...

Use r is redirect
back to the
logon.jsp page and
th e e rror message
is displayed.

See Struts
Sequence diagram
for more details on
the process of
mapping *.jsp to
an Action

1: process(request,response)

20: logon.jsp

2: perform(mapping,
form, request,

response)

22: Return: ActionForward

3: execute(mapping,
form, request,

response)

17: generateForward

4: select(parameters)

16: throws SFAException

15: authenticate()

5: user = new User()

6: setUserName(userName)

7 : mapper = new LogonMapper()

8: populateKeyAttributesValues(user)

9: keySelectQuery = getKeySelectQuery()

10: keySelectParameters = getKeySelectParamters()

11: domain = new SFADomain(dataSource, userID, passwd)

12: pom = new SFAPersistableObjectManager(domain)

13: user = getObject(mapper, keySelectQuery, keySelectParameters)

14: throws SFAException

LogonAction stops normal
p rocessi ng and propagates the
SFAException

1 8 : throws SFAException

19: handleException

SFAException is finally caught by
the NSLDSAction. The centralized
logic for handling exceptions is
contained here. The
SFAException is logged using the
exception log message.

21: generateActionError

NSLDSAction creates an
ActionError object with the
exception's user message
and places the ActionError in
the Session context.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 47 11/26/2002

3.3.17 Web Conversation Framework ActionForm errors

 : A c t io n F o r m*. jsp : A c t i o n S e r v l e t : A c t i o n M a p p i n g s : A c t i o n M a p p i n g : A c t i o n

1 : p r o c e ss(re q u e s t , r e s p o n s e)
2 : m a p p i n g = f i n d M a p p i n g (p a t h)

F i n d m a p p i n g f o r p a t h (i . e .
/ l o g o n) . A l l p a t h s a r e
l o a d e d o n s t a r t - u p f r o m
s e r v l e t - c o n f i g . x m l .

3 : fo rm N a m e = g e tF o rm A t t ri b u t e ()

G e t th e A c t i o n Fo r m n a m e
a ss o c i a t e d w i th t h is m a p p i n g , i f o n e
e xi st s. U s i n g th e f o r m n a m e , ei th e r
p u ll th e f o r m f r o m t h e S e s si o n o r
c re a te a n e w i n s ta n c e o f t h e c l a s s .

4 : g e t F o r m I n s t a n c e
(f o r m N a m e)

5 : p r o c e s s P o p u l a t e (f o r m , r e q u e s t)
P o p u l a t e f o r m w it h
a tt ri b u te s f r o m
re q u e st .

6 : e r r o r s = v a l i d a t e (m a p p i n g , re q u e st)

V a l i d a t e t h e u se r
e n t e r e d f i e l d s. R e t u r n s
a n A c t i o n E rrors o b j e c t .

7 : c h e c k E r r o r s (e r r o r s) I f t h e r e a r e e r r o r s , s e t
t h e A c t i o n E r r o r s o b j e c t
i n t h e S e s s i o n c o n t e x t .

8 : a c t i o n = g e t A c t i o n ()

G e t A c t i o n f r o m m a p p i n g . I f f i r s t
i n s t a n c e o f A c t i o n , c r e a t e o b j e c t a n d
p l a c e i n t o C o l l e c t i o n o f A c t i o n s .
F u t u r e c a l l s f o r t h i s m a p p i n g w i l l u s e
th e sa m e A c t i o n o b j e c t .

9 : pe rf o rm (m a p p in g , fo rm I n s ta n ce , re q u est , re s p o n s e)

C a l l t h e A c t i o n c l a s s's
p e r f o r m () m e t h o d t o
e x e c u t e b u s i n e s s l o g i c .

1 0 : R e tu r n : A c t i o n F o r w a r d

R e t u r n r e s u l t s v i a a n
A c t i o n F o r w a r d o b j e c t

1 1 : * . j s p

G o to n e x t J S P
p a g e .

P O S T re q u e st
t o A c t i o n S e r v l e t

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 48 11/26/2002

4 Architecture Layer Design

The goal of the ITA initiative is to promote code reuse, standardization of development, and
application of best practices across all FSA system development projects. Reusable Common Services
(RCS) components were created as part of this initiative to deliver reusable common functionality. The
ITA Coding Standards and Best Practices guide are provided as Appendix C and Appendix D
respectively. The Coding Standards Review Checklist is provided as Appendix E of this document.

NSLDS II application level uses RCS to provide the core application structure and common services
for the NSLDS II system. This section will concentrate only on the application architecture parts that
require configuration or customization to serve the purpose of building the system.

The following ITA RCS components will be used in NSLDS II web application:

• Web Conversation framework
• Exception Handling framework
• Logging framework
• User Session framework
• JSP Custom Tag Library framework
• Configuration framework
• Persistence framework

Specific implementation and detail usage of these frameworks can be found in the ITA component
detailed design and user guide documents for each framework. These documents are available
through the ITA.

4.1 RCS Web Conversation Framework

The purpose of the ITA Web Conversation framework is to provide a standard for developers and
designers to apply the Model-View-Controller (MVC) design pattern for developing web applications.
This framework allows different tiers of the web application to be created independently of one
another, provide the ability to update the static strings displayed without updating and recompiling
code, and facilitates internationalization of web pages. The Web Conversation framework enables
developers to combine the use of JavaServer Pages (JSP) and Java Servlets to create dynamic pages.

The ITA Web Conversation framework provides for:

• Separation of control and business logic
• Automated form validation
• Multiple page forms (e.g. wizard steps lasting multiple pages).

4.1.1 Web Conversation implementation of MVC Design Pattern

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 49 11/26/2002

In the Model-View-Controller software design pattern, the business logic/state is separated from the
user interface, and from the program flow control. This separation allows web designers to create the
web pages without having to know how to write application code, and vice versa. The separation of
the presentation and logic also promotes code reuse.

The following diagram shows the Web Conversation framework components of the MVC model.

Controller

Action

ActionServlet

View

JSP

Model

ActionForm

Dispatch

State Change

View Selection

User Gestures

Change Notification

Status Query

Figure 5,Mapping of Web Conversation framework to MVC Design Pattern

Model
The model encapsulates the business logic and represents the data in the system. A Java Object
(typically a Java Bean) usually represents the Model component in the Web Conversation framework.
The bean will represent details of the internal state of the system. The Model classes typically extend
the abstract class ActionForm, which is a standard JavaBean with getter and setter methods that are
used to access its state. All form classes are automatically populated and validated within this
framework by the ActionServlet

If an error in processing occurs, an ActionErrors object can be created to hold all errors from the page
and return those errors to the original requesting page so a user can correct the problem.

View
The view is represented by the JSP or HTML page presented to the user. The framework provides
custom tag libraries that allow the JavaServer Pages to be displayed without embedding Java code in
the page. The JSPs contain static HTML and offers authors the ability to insert dynamic content based
on the interpretation (at page request time) of special action tags. There are also custom tag libraries
that facilitate creating user interfaces to interact with ActionForm beans (part of the Model
component). Custom tag libraries also allow the JSP developer to access and display business objects
that are stored within the Session context.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 50 11/26/2002

Controller
The controller is responsible for controlling the flow of the program by processing updates from the
model to the view (and vice versa). The controller is comprised of two components the
org.apache.struts.action.ActionServlet object and classes that extend org.apache.struts.action.Action.
The ActionServlet is loaded upon startup of the WebSphere Application Server and it will read all of
the action mappings defined in the struts-config.xml file. The ActionServlet will act as a switchboard
by reading incoming Uniform Resource Identifier (URIs) requests and matching that against an action
mapping (defined in a struts-config.xml configuration file to find a controller (Action) class that will
handle the request. The Actions are then responsible for interacting with the Model and forwarding
control to the logic within the business objects.

For web-based applications, the vhosts.properties, rules.properties, and queues.properties files work
in conjunction to direct all incoming requests for a particular application pointing to certain extensions
to the appropriate application server, port number, and working directory. The rules.properties file is
used to direct all incoming requests for web pages with an extension of *.activity to be forwarded to its
associated ActionServlet. The ActionServlet will inspect the incoming URI and match it to an Action
class listed in the action mapping in the struts-config.xml file. The Action object handles the request
and forwards control to a view defined in the struts-config.xml file.

Aside from the ActionServlet, all other controller classes must extend the
org.apache.struts.action.Action class. The Action class has a perform method that is used to process
incoming requests and direct results to the next page. It is passed an ActionMapping object (loaded
with values for this controller from the struts-config.xml file) that the findForward() method uses to
direct the results to the appropriate ‘next’ page based on the action performed.

The following diagram details the interaction of the framework within the application server.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 51 11/26/2002

Client Computer

1. User browses to a web page:
http:\\myhost\authorize.activity

Web Server (IHS)

2. Request is directed to the
Web Server

Application Server (WAS)

4. Directs to the ActionServlet
on the appropriate App Server

3. Reads:
queues.properties,
rules.properties,
vhosts.properties

5. Reads:
rules.properties file

ActionServlet

7. Reads:
struts-config.xml

Components within Application Server

6. All *.activity page is directed
to the ActionServlet

Action

10. Maps incoming URI to an
Action and forwards control to it

ActionForm

11. Action performs its activity,
utilizing the ActionForm to
retrieve input data from the
JSP

8. Map the input to an
ActionForm and

perform validation

15. returns an ActionForward

16. Forward control to a
new JSP to be presented
back to the client

13. Action accesses
database to query and
update data

Database Server

Enterprise
Data

Warehouse

9. Return populated
ActionForm

12. ActionForm returns
user input data.

14. Database
returns data

Figure 6, Web Conversation framework implemented in WebSphere Application Server container

4.1.2 Implementation Example

The following section provides example code for the logon functionality of the NSLDS II web
application. The important parts of each component have been bolded to highlight the main focus of
each component. More specific interaction points between these components and the web
conversation framework architecture can be determined by referring to the sequence diagrams for the
Logon section and for the Web Conversation framework provided earlier in this document.

The example code provided throughout the rest of this document will map to the following steps and
the Figure 7 below:

1) When the user clicks submit, the logon.jsp file is directed to the ActionServlet.
2) The ActionServlet references the struts-config.xml file.

a) The struts-config.xml file maps the logon.jsp page to a LogonForm Java Bean.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 52 11/26/2002

3) The LogonForm acts as both a temporary holding place and error checker for web form data.
The User ID and Password are passed via the Post method from the logon.jsp page to the
LogonForm, via the ActionServlet.
a) The LogonForm performs minor error checking (e.g. valid length, characters) and returns the
results to the ActionServlet.

4) If the User ID and Password are in the appropriate format, the ActionServlet passes the
parameters to a LogonAction.

5) Within the LogonAction, the LogonWorker object is instantiated.
6) The LogonWorker object calls the Persistence framework.
7) The framework builds and runs a SQL query against the EDW for valid user information. The

query results are returned to the LogonWorker and checked against the user’s User ID and
password for final validation. If the user was successfully authenticated, the LogonAction
returns an ActionForward containing the next JSP page to be displayed, back to the
ActionServlet. If logon was unsuccessful, the ActionForward refers to the input page, which in
this case would be the logon.jsp page.

ActionServlet LogonAction

LogonWorker

Persistance
Framework

EDW6

5

7

logon.jsp

1

struts-config.xml

2

LogonForm
Java Bean

2a

4

3

3a

Figure 7: Logon Example

Examples for steps 5 - 7 will be provided in the Data Access Layer section (RCS Persistence
framework) of this section. The ActionServlet code is not included as it is a standard class that is not
modified and is a servlet loaded on the Application Server upon start up.

Step 1) logon.jsp (View):

This is an example JavaServer Page that will display the username and password input boxes and will
interact with the form bean to display the form fields and submit button to the user. The <html:form
action=“/logon” focus=“username”> tag uses the struts-html custom tag library developed to bridge
the gap between a JSP view and the other components of the web application.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 53 11/26/2002

On startup, the ActionServlet reads the struts-config.xml file and loads all of the mappings between
the JSP actions (such as /logon) and the Struts Action and ActionForm objects. The action=“/logon”
directs the ActionServlet to look for the mapping <action path="/logon" to find the path to the
ActionForm associated with this form. The JSP action "/logon" is mapped to a LogonAction and
LogonForm.

The <bean:message> tag directs the JSP to read the static text from the
NSLDSApplicationResource.properties file to find a match for the key. For example, <bean:message
key=”prompt.username”/> will have the resulting JSP display User ID: in that field. The <html:text>
and <html:password> tags are renders as HTML <input> element of type text and password
respectively. The property attribute for both tags will be the name used to populate the FormBean
associated with this form. Refer to the model section for details on the interaction with these
attributes.

<%@ page language="java" %>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>
<%@ taglib uri="/WEB-INF/struts-template.tld" prefix="template" %>

<!— insert the template -->
<template:insert template=’/templates/maintemplate.jsp’>
 <!—insert the system restriction header -->
 <template:put name=’restrictHeader’ content=’/template/restrictHeader.html’ direct=’true’/>
 <!—insert the links to pages that do not require log-on -->
 <template:put name=”infoHeader’ content=’/template/infoHeader.html’ direct=’true’/>
</template:insert>

<html:html locale="true">
<head>
<title><bean:message key="logon.title"/></title>
<html:base/>
</head>
<body bgcolor="white">

<html:errors/>

<html:form action="/logon" focus="username">

<table border="0" width="100%">
 <tr align=”middle”>
 <td>
 <bean:message key="prompt.username"/> <html:text property="username" size="30"
 maxlength="30"/>
 <bean:message key="prompt.password"/> <html:password property="password" size="10"
 maxlength="8" redisplay=“false”/>
 </td>
 </tr>
</table>

</html:form>

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 54 11/26/2002

</body>
</html:html>

Figure 8, logon.jsp pseudo code

NSLDSApplicationResources.properties (View):

This is an example properties file that can be customized with messages to be displayed in JSPs for the
web application. Utilizing a properties file allows the developer to maintain all of the static messages
from one location for easier updates. Properties files are also useful for internationalization purposes.
Text strings could be converted into other languages so that one JSP can display text that international
readers can understand.

prompt.username=User ID:
prompt.password=Password:
error.username.required=Username is required
error.password.required=Password is required
error.ssn.required=Please enter either all 3 identifiers or SSN.

Figure 9, NSLDSApplicationResources.properties pseudo code

Step 2) struts-config.xml (Controller):

The ActionServlet is the main component of the Controller and directs the flow of interactions in the
framework. When the JSP containing the form is submitted, control is directed to the ActionServlet ,
which reads the struts-config.xml file to find the mapping for the form. Once the form has passed
validation, the ActionServlet directs the request to an Action subclass, which will then process the
request. Each JSP submits its form to *.activity, which is configured in the Application Server to direct
the request to the ActionServlet. Then struts-config.xml file, which defines the form bean information,
action mappings, and forwarding information, is read for the mappings. This is a sample portion of
the file. The struts-config.xml file is read to produce the ActionMapping object passed to the perform
method in the Action controller class.

For each Action, a mapping will have to be defined with the: path to the page, path to the Action class
for this Action, path to the JSP for this Action. Forward elements will have to be defined that directs
where the control of the application should be forwarded after the Action has completed. The forward
elements include the name used to map to a forward and the path of the JSP to forward to. Global
forward elements are defined with the name referenced by the application and the path to forward it
to. The form-bean information is also defined in this file.

<action-mappings>
 <action path="/logon"
 type="gov.ed.fsa.nslds.LogonAction"
 name="LogonForm"
 scope="request"
 input="/logon.jsp">
 </action>
 <forward name="success” path="/menu.jsp"/>

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 55 11/26/2002

</action-mappings>

<global-forwards>
 <forward name="logoff" path="/logoff.activity"/>
 <forward name="logon" path="/logon.jsp"/>
</global-forwards>

Figure 10, struts-config.xml pseudo code

Step 3) LogonForm (Model):

This is an example LogonForm bean that will be used to capture the current state of the user
information. The bean contains getters and setters to access the current state, validation functionality,
and the ability to reset the forms to a default state.

import javax.servlet.http.HttpServletRequest;
import org.apache.struts.action.ActionError;
import org.apache.struts.action.ActionErrors;
import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionMapping;

public final class LogonForm extends ActionForm
{
 // --- Instance Variables
 private String username = null;
 private String password = null;

 // --- Properties
 /** Return the username. */
 public String getUsername()
 {
 return (this.username);
 }

 /** Set the username.
 * @param ssn : The new ssn */
 public void setUsername(String username)
 {
 this.username = username;
 }

 /** Return the password. */
 public String getPassword()
 {
 return (this.password);
 }

 /**Set the password.
 * @param password The new password */
 public void setPassword(String password)
 {
 this.password = password;

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 56 11/26/2002

 }

 // --- Public Methods

 /**Reset all properties to their default values.
 * @param mapping The mapping used to select this instance
 * @param request The servlet request we are processing */
 public void reset(ActionMapping mapping, HttpServletRequest request)
 {
 this.username = null;
 this.password = null;
 }

 /**Validate the properties that have been set from this HTTP request,
 * and return an ActionErrors object that encapsulates any
 * validation errors that have been found. If no errors are found, return
 * null or an ActionErrors object with no recorded error messages.
 * @param mapping The mapping used to select this instance
 * @param request The servlet request we are processing */
 public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request)
 {
 ActionErrors errors = new ActionErrors();

 if ((username == null) || (username.length() < 1))
 {
 errors.add(“username”, new ActionError(“error.username.required”));
 }

 if ((password == null) || (password.length() < 1))
 {
 errors.add(“password”, new ActionError(“error.password.required”));
 }

 if ((password.length() < 6) || (password.length() > 8))
 {
 errors.add(“password”, new ActionError(“error.password.length”));
 }

 // Enter additional password validation here

 return errors;
 }
}

Figure 11, LogonForm.java pseudo code

4) LogonAction (Controller):

This is an example LogonAction object that extends an NSLDSAction (see RCS Exception framework
section for details on NSLDSAction) object to interact with a LogonWorker object to access the

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 57 11/26/2002

persistence layer to obtain the requested information from the database. The LogonWorker example
will be defined in the Data Access Layer section of this document.

// Package Statement
// Import Statements

public class LogonAction extends NSLDSAction
{
 public ActionForward execute(ActionMapping mapping,
 ActionForm form,
 HttpServletRequest request,
 HttpServletResponse response)
 {
 // cast the form to a LogonForm object
 LogonForm myForm = (LogonForm) form;

 // create a HashMap of parameters to send to the LogonWorker
 // send a HashMap instead of the LogonForm to hide the details of the Web Conversation

// Framework (i.e. LogonForm) from the LogonWorker
HashMap params = new HashMap();

 params.put("userName", myForm.getUserName());
 params.put("password", myForm.getPassword());
 LogonWorker worker = new LogonWorker();
 // execute the select() method in the LogonWorker, passing the userName and password
 WorkUnit workUnit = worker.select(params);

 // check to see if the work the LogonWorker performed was successful

 // if it was successful then forward the user to the Main Menu JSP page
 if (workUnit.isSuccessful())
 {
 return mapping.findForward(“mainMenu”);
 }
 // else if the work was not successful, record the error and send the user back to the Logon
page
 else
 {
 ActionError error = new ActionError();
 // add logic to add logon error to list
 // go back to logon page
 return new ActionForward(mapping.getInput());
 }
 }

Figure 12, LogonAction.java pseudo code

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 58 11/26/2002

4.2 RCS Configuration Framework
The RCS Configuration framework allows configuration data to be stored in the form of properties
files, xml files, database tables, or any combination of the three. The framework creates one common
interface for application developers.

The Configuration framework provides the following services:

• Configuration Data Load: the configuration data files are loaded into a static initializer that on
system start-up loads the data from properties files, xml files, or database tables into one
singleton object for central data access.

• Configuration Data Retrieval: returns the value based on the domain name and the tag/key
name.

The Configuration framework will be used in the NSLDS II system to load the domain values for
connecting to the database. The data source name, database user ID, and database password will be
stored in the dbDataSource.properties file.

The Configuration framework will also be used to load the lookup values from the database. This will
provide a standard programming interface to access the lookup values and will make sure the values
are loaded only one time from the database. The configuration framework utilizes the singleton
design pattern so that all class access the same instance of the framework. All values from the
database and properties files will be loaded in the Configuration framework on initialization of the
NSLDS II web application service.

The following is an example of the master properties file containing the database connection fields.

dataSource="java:comp/env/jdbc/NSLDSWebSiteDB"
userID="system"
password="123456789"

Figure 13, dbDataSource.properties:

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 59 11/26/2002

4.3 RCS JSP Custom Tag Library Framework

The tag library framework provides a collection of commonly used JSP custom tag libraries for JSP
developers to access. A JSP tag library is a collection of custom tags created by developers to aid the
separation of control between the presentation and the application logic. Custom tags allow JSP
developers to focus on the design of the page and presentation issues without having to know how to
code to access enterprise services.

Custom tags are beneficial in that:

• They have access to all the objects available to JSP pages.
• They can modify the response generated by the calling page.
• They can be nested within one another, allowing for complex interactions within a JSP page.

The NSLDS II web application will leverage the following tag libraries:

Custom Tag Library Usage
Logging Taglib The logging tag library will allow JSPs to

access the functionalities of the logging
framework and will be used to provide
logging functionality from the JSP.

Input Taglib
Struts-html taglib

The input tag library combined with the struts-
html tag library to ease form creation and
usage.

Struts-bean Taglib
Struts-logic taglib

The struts-bean and logic tag libraries will
allow the JSP developer to easily manipulate
beans and perform logic operations in the web
application.

Struts-template taglib The struts-template tag library will be used for
creating a template for the entire web
application for the header, footer, menu, and
message areas.

Table 5, Leveraged Custom Tag Libraries

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 60 11/26/2002

4.4 RCS Exception Handling Framework

The ITA Exception Handling framework is designed to provide a mechanism for trapping and dealing
with any erroneous or unexpected actions which applications may encounter during runtime. The
Exception Handling framework also allows error message formatting standards to be developed and
enforced to ensure proper information is gathered if a program failure occurs. This framework was
created as part of ITA Release 2.0 before the name change from SFA to FSA; therefore, the
framework’s Java classes’ name contains SFA.

The ITA Exception Handling framework enhances the ability of an application to define and trap
errors that may arise as the application executes. The Exception Handling framework includes the
following key components:

• SFAExceptionFactory
• SFAException

The best way to customize the SFAException for use in an application is by defining application-
specific exception codes. The SFAException class is the only exception class instantiated, but by
supplying it with different exception codes, different types of exceptions are created. By customizing
it this way, the SFAExceptionFactory does not have to be extended to create different exception objects
other than SFAException.

The SFAExceptionFactory is the class used to create exceptions. It should work in any application
without modifications. This class is designed to work as a singleton (i.e. there is only one instance of it
in the application server’s memory). Therefore, a reference to the factory is obtained via the
getInstance() method. It also contains some exception-centered utility methods, such as
getNestedException(), which can be used to obtain the nested exception for all standard Java exception
types. The SFAExceptionFactory exposes a method called getMessage() that when passed a
SFAException will return the log message associated with that exception. The log message is pulled
from a properties file containing mappings of exception codes to messages.

The SFAException class is the base exception, which can be customized on an application level. It has
setters and getters methods for each of its main properties, such as methodName and className.
The developer will use the SFAException and SFAExceptionFactory classses when catching exception
thrown by Java components. The original Java exception will be caught, then a SFAException is
created using the SFAExceptionFactory. The exception code depends on the type of exception of the
original Java Exception.

4.4.1 NSLDS II Exceptions
There are different categories of exceptional conditions that may occur during the execution of the
NSLDS II web application. The different categories where exceptions could occur are:

• Field-Level validation
• Application level exceptions
• System level exceptions

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 61 11/26/2002

• JSP error pages

Two of the exception categories, Field-Level Validation and JSP Error Pages, do not use the Exception
Handling framework levels, but rely on the Web Conversation framework for proper handling of
system and application errors. The fundamental idea of exception handling for all categories is the
centralization of logic to catch the exceptions, produce meaningful log and user messages, and redirect
control to the appropriate response.

4.4.2 Field-level Validation

In using the Web Conversion framework, all field-level validation of the JSP pages will be executed
within the validate method of the associated ActionForm Java object (i.e. a logon.jsp page will have a
LogonForm to validate the web form). This validation consists of checking each field on a web form to
ensure the proper data is being sent by the user and all required fields are populated. The
ActionForms use an ActionError object to record the validation errors that occur in the validate
method. Every validation error gets recorded and an ActionErrors collection object is sent back to the
ActionServlet. The error messages displayed to be displayed will be read from the
NSLDSIIApplicationResources.properties file and show to the user.

The following is a diagram of the sequence for validating form fields and displaying the appropriate
information to the user when an error is encountered.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 62 11/26/2002

Username

Password

Submit

1. User enters Username
and Password and clicks
Submit

Target URL = /logon
ActionServlet

7. ActionServlet checks the
ActionErrors object to
determine if any errors
occurred and reads the
ApplicationResources
properities file.

2. logon page is directed
to ActionServlet

3. ActionServlet reads the
struts-config.xml file to
map the logon page to the
LogonForm and
LogonAction objects.

<form-beans>
 <form-bean
 name="logonForm"
 type="gov.ed.sfa.nslds.LogonForm"/>
</form-beans>
<action-mappings>
 <action path="/logon"
 type="gov.ed.sfa.nslds.LogonAction"
 name="logonForm"
 input="/logon.jsp">
 </action>
</action-mappings>

logon.jsp

struts-config.xml

4. struts-config.xml
returns the ActionForm
and Action classes for this
activity.

ActionErrors errors = new ActionErrors();
 if ((username == null) || (username.length() < 1))
 errors.add("username", new
 ActionError("error.username.required"));
 return errors;

LogonForm.java

5. ActionServlet calls
validate method in
LogonForm

6. LogonForm returns an
ActionErrors object that
contains all field-level
validation errors.

8a. Validation errors
occurred. User is
redirected back to
logon.jsp page and errors
are displayed.

8b. No validation errors.
Normal processing
continues and
ActionServlet calls perform
method in LogonAction.

. . .

Figure 14, Field-Level Validation

4.4.3 Application and System Level Exceptions

Application and system level exceptions in NSLDS II can occur during the life of the application.
These exceptions will occur at well-defined places and will therefore be caught and wrapped with the
SFAException class. Java Runtime exceptions are unchecked exceptions that could not be predicted
during the design phase or can occur at any place in the code, such as a
java.lang.NullPointerException. A NullPointerException is thrown when an action is performed on a
null object.

Application and system level exceptions will differ by their exception code value used. The exception
code value is used to define the type of exception when a SFAException is created. It also maps to the
appropriate properties files and is used to retrieve the log and user messages associated with the
exception.

The following tables list sample application and system level exceptions and the possible log messages
and exception codes for each. A complete list of existing exception messages was not provided and
will have to be defined in a future version.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 63 11/26/2002

Exception Name Code Example Message

Authentication Exception 1001 The username and password could not be verified.
Add Exception 1002 The disbursement amount could not be added to the loan

details.
Delete Exception 1003 The loan record could not be deleted.
Update Exception 1004 The loan contact information could not be updated.

Table 6, Sample Application Exception Code

Exception Name Code Example Message

SQL Exception 2001 A SQL error occurred.
JNDI Exception 2002 A JNDI error occurred.
Communication Exception 2003 Could not connect to external resource.
FileNotFound Exception 2004 Could not locate resource file.
Undefined Exception 3001 A general error occurred.

Table 7, Sample System Exception Code

The difference between these two types of exceptions is very important since they are logged as
different levels and indicate different severity of the exceptions. Usually, application exceptions occur
due to normal behavior of the system. They are used to indicate an action cannot be completed, but
allow the system to exit gracefully. System exceptions, on the other hand, often indicate that
something in the execution environment has been changed or no longer working. They tend to be
much more severe and may affect not only the current action executing, but also subsequent actions.
Application level exceptions will be logged at the ERROR level, and System level exceptions will be
logged at the FATAL level. Please refer to the next section, RCS Logging framework on the different
logging levels available.

4.4.4 Implementation Example

The NSLDSAction class will handle all Java exceptions, including SFAExceptions and Runtime
exceptions. This class extends the Web Conversation framework's Action class and is the base class for
all actions in the NSLDS II application. The NSLDSAction class overrides the perform method of the
Action class. When the ActionServlet calls the perform method in an application Action (such as
LogonAction) the call gets forwarded to the NSLDSAction, which in turn calls the execute method of
the LogonAction. The NSLDSAction provides the central exception handling logic around the call to
the LogonAction and will trap and log all exceptions that propagate back to the NSLDSAction. The
following is pseudo-code for the NSLDSAction.

NSLDSAction (Controller):
There will be two properties files used to retrieve the exception messages. Each properties file will be
a listing of the same exception code keys, matched to the appropriate exception messages. The
logmessages.properties file will include the messages used by the Logging framework to record the
exceptions as either ERROR or FATAL. The NSLDSIIApplicationResource.properties file, which is
defined by the Web Conversation framework, contains the user messages.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 64 11/26/2002

The NSLDSIIApplicationResources.properties file is used in conjunction with the ActionError object,
which will hold the exception code used to retrieve the error message from the properties file. The
user messages will be displayed on the page represented by the ActionForward object. As an
example, if a SFAException with the exception code equal to 2001 (SQL Exception) is encountered, the
exception handling code will read from both the logmessages.properties file and the
NSLDSIIApplicationResource.properties file.

The RCS Logging framework (see next section) will record the log message into the log file and the
user message will be displayed using the ActionError object. There will also be general messages in
the log and user message properties files for undefined exceptions that are not of type SFAException,
such as the NullPointerException, but encountered during runtime.

public ActionForward perform(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response)
{
 // ActionForward is returned to redirect user
 // If exception occurs, then redirect back to input page or error page
 ActionForward forward = null;

 // try/catch around call to LogonAction execute() method
 try
 {
 // call the execute method in LogonAction – returns ActionForward
 forward = execute(mapping, form, request, response);
 }
 catch (SFAException sfae)
 {
 // determine if application or system exception
 // log SFAException
 handleException(sfae);
 forward = Input Page with exception message
 }
 finally
 {
 // always return a forward page, even when handling exceptions
 return forward;
 }
}

Figure 15, NSLDSAction.java pseudo code

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 65 11/26/2002

The diagram shows the handling of an exception thrown by the database. The exception is originally
wrapped by a SFAException in the Persistence framework and then propagated back to the
NSLDSAction, where it is handled.

ActionServlet LogonAction
extends NSLDSAction

NSLDSAction
extends Action

try {
 return execute(...);
}
catch (SFAException e) {
 handleException(e);
 return new ActionForward(...);
}

1. ActionServlet calls the
perform method in the
LogonAction. This method
is forwarded to its parent
class NSLDSAction.

2. NSLDSAction
calls execute method
in the LogonAction.

LogonWorker
extends Worker

Persistence Framework

7. SQLException is caught
and a SFAException is
created with an exception
code of 2001.

EDW
h

3. LogonAction creates a
LogonWorker object and
calls the authenticate
method.

4. LogonWorker calls the
Persistence Framework to
query the database.

5. Persistence Framework
creates a SELECT
statement and queries the
EDW.

6. The EDW throws a
SQLException due to a
malformed SQL statement.

8. SFAException thrown
by the Persistence
Framework

9. SFAException
propagated back to
LogonAction.

10. SFAException
propagated back to
NSLDSAction.

11. NSLDSAction reads the messages
from a properties file tied to the
exception code and logs the message.

12. ActionForward is
returned to the
ActionServlet and redirects
the user to the logon.jsp
page.

12. After recording the messages,
a new ActionForward object is
created to redirect the user back to
the input page.

Figure 16, SFAExceptions Usage

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 66 11/26/2002

4.4.5 JSP Error Pages

In addition to field-level validation and SFAExceptions, there may also be exceptions that occur in the
ActionServlet code, JavaServer Pages, and the connection between the two. Any exceptions that occur
in the ActionServlet and in the connection to it would be system level exceptions that cannot be caught
by NSLDSAction. NSLDSAction cannot capture these exceptions as the failure will have occurred and
the activity stopped before the call to NSLDSAction has been made.

The JSP specification allows the developer to define error pages that are included in the header of the
JSP page. If an exception is thrown by the JSP or code the JSP calls, then control will be directed to the
error page. The error page will handle the exception appropriately, displaying a message to the user
and logging the exception. There will be one global errorPage.jsp file that will contain the centralized
error handling code. There is only one errorPage.jsp file as it is a requirement of the current system.
errorPage.jsp will utilize the Logging custom tag library (please refer to the RCS JSP Custom Tag
Library framework section) to call the NSLDSLogger and log the exception stack trace (at the FATAL
(level – please refer to the RCS Logging framework) read from the JSP implicit object "exception" that
is available to JSP error pages.

The "exception" object has page scope so if there are exceptions thrown by the ActionServlet for
multiple users, each user will see a different exception object. Since the error page will not be able to
determine the cause of the exception, the message displayed to the user will be a generic system
exception message that is stored statically in the errorPage.jsp file. The following diagram details an
exception thrown by the ActionServlet and handled by the errorPage JSP.

Username

Password

Submit

1. User enters Username
and Password and clicks
Submit

logon.jsp

Target URL = /logon.activity

ActionServlet

3. ActionServlet throws an
IOException because it can
not read the struts-
config.xml file

2. logon.activity page is
directed to ActionServlet

4. IOException
propagated back to the
calling code in logon.jsp

errorPage.jsp
5. logon.jsp forwards
control to errorPage.jsp

6. errorPage.jsp catches
and handles the exception,
logging the stack trace. A
generic user-friendly
message is displayed on
the webpage.

Figure 17, JSP Error Page

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 67 11/26/2002

4.5 RCS Logging Framework

The ITA Logging framework enhances the current logging capabilities of the WebSphere Application
Server, by allowing programmers to dynamically set logging and tracing functionality without
modifying source code. The Logging framework also allows for formatting standards to be developed
and enforced for log files to ensure proper information is gathered if a failure occurs.

The ITA RCS Logging framework provides the following features:

• Simple logging API
• Background logging (Configurable)
• Multiple message severities
• Configuration can be modified on-the-fly while the system is running

The Logging framework allows the programmer to log messages easily through a simple API. It
contains one main object called Syslog that provides a set of calls to log in a variety of manners. Most
of the operation of Syslog is set through the rcs.xml configuration file the component uses. The
logging level and output location are defined in the rcs.xml file and the file can be configured while the
Application Server is running. Any changes made to the configuration file will not take effect though
until the instance of the NSLDS service has been restarted.

There will be four message levels of the Logging framework used in the NSLDS II web application (in
order of severity): DEBUG, INFO, ERROR, and FATAL. These levels allow the Logging framework to
be used as a debugging tool during development and as a troubleshooting tool when the application
goes into production. During development and testing, the messages may be simply sent to a single
log file. When the system is moved into production, log messages can be split up by severity levels
(Fatal messages may result in someone being paged, for instance) and log files may be rotated every
night and archived. These kinds of configuration changes do not require changes to the code and can
even be made while the system is running.

In the Production environment, the rcs.xml file will define the location of the NSLDS web application’s
system log file. The file will be stored in: /opt/WebSphere/AppServer/logs/ and the file name will
be NSLDS_System.log. The storage location is configured in the WebSphere Administration Console.
The log file is rotated regularly and CSC’s Unicenter TNG tool can integrate with the RCS Logging
framework by monitoring the log file. When the monitoring tool encounters a FATAL message in the
log, it should trigger an escalation action to CSC personnel.

rcs.xml
<?xml version="1.0" encoding="UTF-8"?>
<Syslog defaultMask="ERROR" backgroundLogging="false">
<Logger class="com.protomatter.syslog.FileLog" name="NSLDS_System">
 <fileName>/opt/WebSphere/AppServer/logs/NSLDS_System.log</fileName>
 <autoFlush>true</autoFlush>
 <stream>System.out</stream>
 <Policy class="com.protomatter.syslog.SimpleLogPolicy">
 <channels>ALL_CHANNEL</channels>
 <logMask>INHERIT_MASK</logMask>

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 68 11/26/2002

 </Policy>
 <Format class="com.protomatter.syslog.SimpleSyslogTextFormatter">

 <showChannel>false</showChannel>
 <showThreadName>false</showThreadName>
 <showHostName>false</showHostName>
 <dateFormat>HH:mm:ss MM/dd</dateFormat>
 <dateFormatCacheTime>1000</dateFormatCacheTime>
 <dateFormatTimeZone>America/New_York</dateFormatTimeZone>
 </Format>
</Logger>
</Syslog>

4.5.1 Logging Usage Standards

This section will detail the levels and scenarios for using the ITA Logging framework in the NSLDS II
application. NSLDS II JavaObjects and JSPs will be utilizing the four logging levels defined above.
These four levels provide a mechanism to differentiate the degree of importance of the information
logged. The DEBUG and INFO levels are typically used during development and testing and turned
off when the application is in production. While this will reduce the size of the log file created, the log
files will still need to be rotated on a nightly basis. Log files will be kept for a minimum of five days
for any troubleshooting purposes before being deleted. This section will define which phase of the
application lifecycle the logging level is required and provide guidelines as to the type of information
to be captured in the log message.

The usage guidelines of the Application Programming Interfaces (API) below uses a custom
NSLDSLogger described in Appendix F. This logger is an application specific wrapper around the
Syslog class provided by the Logging framework. The developer would call
NSLDSLogger.getLogger().logLEVEL("short message", " detailed message"); where LEVEL would be the
logging level (logDebug, logInfo, logError, logFatal).

Refer back to the Exception Handling section for more details on system and application level
exceptions, which utilize the ERROR and FATAL logging levels.

4.5.1.1 DEBUG

The DEBUG logging level is primarily used by the developers to replace System.out.println()
statements used to test and debug code. These log statements will only be recorded during the
development and test phases of the application lifecycle and should be used thoroughly when writing
the Java code. The key advantage of the DEBUG log statements over System.out.println() statements
is they do not need to be removed when migrating to a production system. The DEBUG level can
simply be turned off when it is no longer necessary to view these statements.

The DEBUG logging level will be used in the following environments:

• Development
• Unit Test
• Assembly Test

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 69 11/26/2002

• System Integration Test
• Training

Usage Guidelines
The developers should use the DEBUG log statements wherever they feel it is necessary. As stated
before, there is minimal overhead in using DEBUG statements and the more information provided via
the logging process will greatly reduce the amount of time in completing bug fixes. The following
table is a sample list of scenarios where the DEBUG log statements could be included:

Example Scenario Example Message

Entry/Exit points of complex
methods

Entering Loan Details update method.

Test conditions used in logical
statements

Start Date = 9/23/1998 and End Date = 2/15/2003

Before and after data
transformations

SSN = 123456789
SSN = 123-45-6789

Results of calculations Subsidized Loans Pending disbursements =
(LOAN_AMOUNT -
LOAN_TOTAL_DISBURSEMENT_AMOUNT -
LOAN_TOTAL_ CANCELLATION_AMOUNT) =
250

SQL statements LogonWorker – password query = "SELECT
password FROM table WHERE user = userID"

Load external resources Loading ApplicationResources.properties file
Table 8, Debug Usage Scenarios

Usage Example
NSLDSLogger.getLogger().logDebug("This is a short debug message", "This is a more detailed debug
message");

The developer can log information that may be useful to debug later for checking to see what the
application had processed. While coding LogonWorker, the developer would be able to put in
NSLDSLogger.getLogger().logDebug("In LogonWorker", "LogonWorker will access persistence
framework to query = ‘SELECT password FROM table WHERE user = userID’");

4.5.1.2 INFO

The INFO logging level should be used to record major points in the application. The main purpose of
the INFO level is to record the roundtrip of requests made to the system. For example, when a user
clicks on a submit button for a web form, a request is generated to process the form and sent to the
Application Server. This request should be logged using the INFO level. When the request is finished
processing and a response returned to the user, the response should also be logged using the INFO
level. The INFO level is utilized mostly by application framework classes and Java Objects and will
not be used heavily by the JSP developers.

The INFO logging level will be used in the following environments:

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 70 11/26/2002

• Development
• Unit Test
• Assembly Test
• System Integration Test
• Training

Usage Guidelines
The INFO level may be utilized to record any changes made to the system through field updates,
especially those involving monetary adjustments. If a system properly utilizes INFO level logging, it
will be possible to trace through the major events of an actions as it executes during runtime. INFO
level messages should be written so that they may be understood by more than just the Java
developer. The idea is to have a high-level snapshot of the system from input to output. The
following is a sample list of scenarios where the INFO log statements could be included:

Example Scenario Example Message

Input requests and Output
responses

User trying to logon with username = test and
password = 123456789

Any changes to monetary fields Loan principal amount changed from 2,300 to
3,500.

Updates to user/system fields Student contact name update to John Smith
Creation/Deletion of records User added disbursement payment of 150

Table 9, INFO Usage Scenarios

Usage Example
NSLDSLogger.getLogger().logInfo("This is a short info message", "This is a more detailed info
message");

The developer can log activities that occur in the system later for checking to see what the application
had processed. While coding LogonAction, the developer would be able to put in
NSLDSLogger.getLogger().logInfo("In LogonAction", "User trying to logon with username = xyz");

4.5.1.3 ERROR

The ERROR and FATAL logging levels are closely linked together in that they are both used when
exceptions occur during runtime. The main difference is the ERROR level should be used to log
application exceptions where as the FATAL level should be used to record system level exceptions.
Application exceptions will mostly be generated from field-level validation exceptions and conditions
that break the normal execution. These circumstances, while exceptions, are mostly normal behavior
of the system. They usually do not require escalation to support personnel, but do require proper
logging and robust messaging to inform the user of the condition. Please refer to the Exception
Handling framework which implements the messaging functionality.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 71 11/26/2002

The ERROR logging level will be used in the following environments:

• Development
• Unit Test
• Assembly Test
• System Integration Test
• Performance Test
• User Acceptance Test
• Production
• Training

Usage Guidelines
The ERROR level is used to record erroneous situations when exceptions arise in application code
during runtime. The log message should include the circumstances behind the exception and the
location the exception occurred, as well as any additional information provided by the application
developer. However, the message should not be logged by the developer in the application code. The
developer will only be responsible for throwing the exception (again, see the Exception Handling
section). The exception will be propagated to a central location in the system, the NSLDSAction,
where it will be handled by the NSLDSAction and the exception message logged. All application
exceptions should be logged with the ERROR logging level.

Exception Name Custom Message

Authentication Exception User not authenticated with username=test and
password=1233456

Add Exception New disbursement amount record could not be added
on the Loan Activities. Amount=2,500 and
Date=10/21/2002

Delete Exception The insurance claim payment could not be deleted.
Amount=1,000, Date=10/30/2002, Reason Code=DF

Table 10, ERROR Usage Scenarios

Usage Example
NSLDSLogger.getLogger().logException("This is a custom exception message.", new
SFAException(...));

The developer would be able to log an error message if the logon was unsuccessful. In the
LogonAction, if the WorkUnit's isSuccessful() method returned false, the LogonAction would know
the authentication was unsuccessful and log a message using the ERROR level. The java statement
would look like NSLDSLogger.getLogger().logException("Authentication unsuccessful with User=" +
userName +" and Password=" + password, sfaAuthenticationException) where
sfaAuthenticationException is a SFAException created with the AuthenticationException exception
code.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 72 11/26/2002

4.5.1.4 FATAL

As stated before, the FATAL logging level should be used to log system level exceptions. These are
exceptions when a system component has failed unexpectedly or a system resource was unavailable.
In most cases, support personnel should be notified by the CSC’s Unicenter TNG monitoring tool
during these circumstances.

The FATAL logging level will be used in the following environments:

• Development
• Unit Test
• Assembly Test
• System Integration Test
• Performance Test
• User Acceptance Test
• Production
• Training

Usage Guidelines
Similar to ERROR level logging, all logging of FATAL level messages will be constrained to one
central location. This allows for a standardization of exception logging and reduced code duplication.
Application developers do not need to worry about logging FATAL messages. All FATAL messages
should be the result of system exceptions or Java runtime exceptions (such as
java.lang.NullPointerException).

Exception Name Custom Message
SQL Exception Malformed SQL statement. "SELECT * from "
FileNotFoundException Could not load resource file

NSLDSApplicationResource.properties
NullPointerException java.lang.NullPointerException. A general error

occurred.
Table 11, FATAL Usage Scenarios

Usage Example
NSLDSLogger.getLogger().logException("This is a custom exception message", new
SFAException(…));

The FATAL log level would only be used by the developer coding the NSLDSAction class. The
NSLDSAction handles all exception cases, which should be logged with the FATAL log level. In
handling the exceptions, the developer should include a log statement like the following:
NSLDSLogger.getLogger().logException("A System exception has occurred", sfaException), where
sfaException is a system SFAException

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 73 11/26/2002

4.5.2 Logging Usage Summary

The table below summarizes the different environments and the logging level that should be captured
for it.

Environment DEBUG INFO ERROR FATAL
Development x x x x
Unit Test x x x x
Assembly Test x x x x
System Integration Test x x x x
Performance Test x x
User Acceptance Test x x
Production x x
Training x x x x

Table 12, Logging Level Usage Summary

Although DEBUG and INFO are typically turned off during performance testing, user acceptance
testing, and production; those messages could be turned back on if inexplicable system errors occur
and need to be traced through the system.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 74 11/26/2002

4.6 RCS User Session Framework
The session framework provides a mechanism for the retrieval and manipulation of user session and
context data stored in cookies, web server session variables, or in a data store. The framework also
creates one common interface for application developers to access the session via any of these
methods.

The session framework will provide context management service that stores a user’s temporary data
during their HTTP session. The session framework will provide for the following services on both the
client-side and server-side contexts:

• A common interface to all HTTP variables (request, cookie, session)
• Storing temporary data that should persist across each web page presented to the user

4.6.1 Session Framework Usage Guidelines

The WebSphere Administration Console contains a section for defining the session settings for the
web application. For NSLDS II, session id will be stored on a session cookie on the client in the
browser’s memory. The actual session information will be stored in the Sessions table in the Oracle
database. Session information is persisted to the database to ensure that session information will
be maintained and accessed in a load-balanced environment.

• Users must have cookies enabled on their browsers. If it is not enabled, the user will be

directed to a session error page. NSLDS II may not use persistent cookies as they are against
federal regulations. Since cookies are required, URL rewriting will not have to be supported.

• In the session manager should have a timeout setting of 30 minutes.
• In the session manager, manual update will be set to false. This means that the database will

be written to at the end of execution of every servlet’s service() method.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 75 11/26/2002

4.7 Content Deployment (Interwoven TeamSite)

4.7.1 Content Deployment Approach

Interwoven ‘s TeamSite is a powerful content management tool that can be used for version control,
virtualization, templating, workflow, and deployment. For NSLDS II, TeamSite will be used for
version control and deployment of the PDF help files to different environments. TeamSite will be used
only for deploying the static documents, such as the PDF help files and monthly newsletters.

Its version control utility will be used to monitor the changes and differences in versions of PDF files
published to the site. It also provides the capability to ‘archive’ how the PDF file looked at a specific
time.

Interwoven's Open Deploy technology allows users to deploy content housed in TeamSite to
development, test, and production environments. Typically, there is a two-week change control
request process to update any web sites in the Production environment. Using TeamSite and Open
Deploy to deploy PDF documents to production bypasses this process and negates the wait time.
NSLDS II monthly newsletters can be created and published in a matter of days instead of having to
wait weeks for the process to be completed.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 76 11/26/2002

5 Data Access Layer

5.1 RCS Persistence Framework

The ITA persistence framework provides a transparent and flexible mapping of the business objects to
relational database tables. It is transparent in that once the business objects and their mappings are
defined, application developers do not need to have any knowledge of the underlying relational
database tables. It is flexible in that if the underlying relational database model changes, the business
object model does not have to change with it – a change in the mapping layer is all that should be
required. This framework represents the Data Access Layer that the Architecture Layer will use to
access the database.

The table below shows the components that work together to make up the Persistence framework:

Component Description
ISFAPersistableMapper Interface that all business mappers must

implement. Contains logic for the object-data
model mapping.

Domain Component Placeholder class for database's data source name,
user ID, and password.

Unit of Work Component This class is not exposed to the developer. Used
internally in the Persistence framework to record
a roundtrip transaction.

Persistable Object Manager Component Defines the different database operations exposed
to the client objects. Used to select, update, insert,
and delete records with the database. Provides
transactional monitoring through abort and
commit methods.

Result Set Component This class is not exposed to the developer. Used
internally in the Persistence framework to record
results from database query.

Business Mapper Component Individual mappers that implement the
ISFAPersistableMapper and contains the actual
mappings to the database.

Business Object Component Individual business objects such as User, Student,
School with attributes that store the parameters
for the queries and also the results of the queries.

Table 13, Persistence Framework Component Description

The Worker subclasses provide the centralized access to the Persistence framework. The related
Worker subclass is called by its Action object. The Worker creates the appropriate Mapper class and
populates the attributes of the business object the work is being performed on.

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 77 11/26/2002

The WorkUnit has methods for the LogonAction to determine if the action was successful and, if so,
retrieve the results. The WorkUnit returns the results as an Object, so the Action and Worker classes
will have to know how each other expects the results. In the Logon example, both the Action and
Worker use the User object to perform the work.

Example usage of the Persistence framework as it applies to NSLDS II:

Business Object Component:

The Business Object components are for the most part simply Java data beans. They contain getter and
setter methods to access the attributes of the component. In the NSLDS system, the business objects
may also contain some business logic to operate on their attributes. All example of a Business Object
would be the Loan class. The Loan class has many different attributes, each with a get and set method
corresponding to the attribute name (i.e. getInterestRate and setInterestRate for the interestRate
attribute).

//package statement
//import statement(s)

public class User
{
 private String userName;
 private String currentPassword;
 // . . . other attributes included here

 public User()
 {

 }

 public String getUserName()
 {
 return userName;
 }

 public void setUserName(String userName)
 {
 this.userName = userName;
 }

 public String getCurrentPassword()
 {
 return currentPassword;
 }

 public void setCurrentPassword(String currentPassword)
 {
 this.currentPassword = currentPassword;
 }

 // . . . other getter/setter methods included here

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 78 11/26/2002

}

Figure 18, User.java pseudo code

Business Mapper Component:

A Business Mapper component is defined for each Business Object that is mapped to a database table.
The Business Mappers implement the logic necessary to select, insert, update, and delete database
records about the Business Objects. The Mappers use the Business Object components to generate the
SQL queries and update the business objects with the results returned by the queries. The Business
Mappers expose methods to retrieve the SQL queries, which are executed by the
SFAPersistableObjectManager.

// package statement
// import statements

public class LogonMapper implements ISFAPersistableMapper
{
 private User user;
 private String tableName;

 public LogonMapper()
 {
 tableName = "USER";
 }

 public String getDeleteQuery()
 {
 return "DELETE FROM " + tableName + " WHERE userName = ?userName?";
 }

 // returns a collection of parameters to insert into the query (i.e. userName)
 public Vector getDeleteParameters()
 {
 Vector params = new Vector();
 params.addElement(new SFAParameter("userName", user.getUserName(),
 SFAParameter.PTSTRING));
 return params;
 }

 public String getInsertQuery()
 {
 return "INSERT INTO " + tableName + " (USERNAME, CURRENTPASSWORD)
 VALUES(?userName?, ?currentPassword?)";
 }

 // returns a collection of parameters to insert into the query (i.e. userName, currentPassword)
 public Vector getInsertParameters()
 {
 Vector params = new Vector();
 params.addElement(new SFAParameter("userName", user.getUserName(),
 SFAParameter.PTSTRING));

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 79 11/26/2002

 params.addElement(new SFAParameter("currentPassword", user.getCurrentPassword(),
 SFAParameter.PTSTRING));
 return params;
 }

 public String getKeySelectQuery()
 {
 return "CREATE VIEW clear_auth (currentPassword) as SELECT ?userName?, decrypt_char(currentPassword)
 FROM NSLDS_USER_AUTH Set encryption password = ‘test123’ SELECT userName,
 currentPassword FROM clear_auth";
 }

 // returns a collection of parameters to insert into the query (i.e. userName)
 public Vector getKeySelectParameters()
 {
 Vector params = new Vector();
 params.addElement(new SFAParameter("userName", user.getUserName(),
 SFAParameter.PTSTRING));
 return params;
 }

 public String getSelectQuery(String selectCondition)
 {
 return "SELECT userName, currentPassword FROM " + tableName + " WHERE " + selectCondition;
 }

 public String getUpdateQuery()
 {
 return "UPDATE " + tableName + " SET currentPassword = ?currentPassword? WHERE
 userName = ?userName?";
 }

 // returns a collection of parameters to insert into the query (i.e. userName, currentPassword)
 public Vector getUpdateParameters()
 {
 Vector params = new Vector();
 params.addElement(new SFAParameter("userName", user.getUserName(),
 SFAParameter.PTSTRING));
 params.addElement(new SFAParameter("currentPassword", user.getCurrentPassword(),
 SFAParameter.PTSTRING));
 return params;
 }

 // Updates a User object with the results of the query and returns the User object
 public Object newFrom(SFAResultSet resultSet) throws SFAException
 {
 User user = new User();
 user.setUserName(resultSet.getString("userName"));
 user.setCurrentPassword(resultSet.getString("currentPassword"));
 return user;
 }

 // Used to retrieve the query parameters for the insert, update, and selectCondition queries
 public void populateAttributeValues(Object obj)

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 80 11/26/2002

 {
 this.user = (User)obj;
 }

 // Used to retrieve the query parameters for the key select query
 public void populateKeyAttributeValues(Object obj)
 {
 this.user = (User)obj;
 }

 public void setTableName(String tableName)
 {
 this.tableName = tableName;
 }
}

Figure 19, LogonMapper.java pseudo code

Worker (To Retrieve Data from the Database):

The Worker abstract class makes use of the Configuration framework (please refer to the RCS
Configuration framework for details), to access the data source name, database user ID, and database
password necessary for creating the SFADomain object and connecting to the database. These values
are stored in a properties file, read by the Configuration framework so they may be easily maintained
and changed without recompiling the code base.

// package statement
// import statement(s)

public abstract class Worker
{
 // domain and pom are available to Worker subclasses
 protected SFADomain domain;
 protected SFAPersistableObjectManager pom;

 public Worker()
 {
 // Use Configuration framework to obtain database dataSourceName, userID, and password
 String dataSourceName = FSAConfigurationSI.getProperty("master", null, "dataSource");
 String userID = FSAConfigurationSI.getProperty("master", null, "userID");
 String password = FSAConfigurationSI.getProperty("master", null, "password");
 // Create SFADomain
 domain = new SFADomain(dataSourceName, userID, password);
 // Create PersistableObjectManager with this domain
 pom = new SFAPersistableObjectManager(domain);
 }

 public abstract WorkUnit select(HashMap parameters);
 public abstract WorkUnit insert(HashMap parameters);
 public abstract WorkUnit delete(HashMap parameters);
 public abstract WorkUnit update(HashMap parameters);
}

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 81 11/26/2002

Figure 20, Worker.java pseduo code

LogonWorker (To Retrieve Data from the Database):

For example, a LogonWorker is called by a LogonAction that performs work on a User object. The
LogonWorker creates a LogonMapper and populates the mapper's attributes with values from the
User object. The LogonMapper is responsible for mapping the User object to the database, through
the PersistableObjectManager component. The LogonMapper will return the results to the
LogonWorker as an updated User object. The LogonWorker wraps the updated User object in a
WorkUnit and returns the WorkUnit to the LogonAction.

// package statement
// import statement(s)

public class LogonWorker extends Worker
{

 public LogonWorker()
 {

 }

 public WorkUnit select(HashMap parameters)
 {
 // get the userName and password string from the hashmap, passed in by the LogonAction
 String userName = (String)parameters.get("userName");
 String userPassword = (String)parameters.get("password");

 // create a User object and populate userName attribute
 User user = new User();
 user.setUserName(userName);

 // create LogonMapper object and populate attributes
 LogonMapper mapper = new LogonMapper();
 mapper.populateKeyAttributeValues(user);

 // Use the PersistableObjectManager, pom, instantiated by the Worker super class
 // retrieve the updated user object from the database – will contain currentPassword
 user = (User)pom.getObject(mapper, mapper.getKeySelectQuery(),
 mapper.getKeySelectParameters();

 // create WorkUnit to return results
 WorkUnit workUnit = new WorkUnit();

 // check to see if user entered password matches password from database
 // if yes, then set the workunit success to true, else false
 workUnit.setSuccessful(user.getCurrentPassword().equals(userPassword));

 // set updated User object as the results in the workUnit
 workUnit.setResults(user);
 return workUnit;
 }

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 82 11/26/2002

 public WorkUnit insert(HashMap parameters)
 {
 // . . .
 }

 public WorkUnit delete(HashMap parameters)
 {
 // . . .
 }

 public WorkUnit update(HashMap parameters)
 {
 // . . .
 }

}

Figure 21, LogonWorker.java pseudo code

WorkUnit (To Retrieve Data from the Database):

The WorkUnit exposes two methods dealing with the success of work - isSuccessful() and
setSuccessful(boolean). The setSuccessful() method is used by the Worker subclasses to notify the
Action subclasses if this piece of work has completed successfully. This method is called after the
work has completed and before the WorkUnit is returned to the Action subclass. When the Action
subclass receives the WorkUnit from the Worker subclass, the first thing it does is call isSuccessful() to
check if the work done by the Worker was successful or not. It uses this information to determine the
next course of action and the type of ActionForward to return to the ActionServlet.

// package statement
// import statement(s)

public class WorkUnit
{
 private boolean success;
 private Object result;

 public WorkUnit ()
 {

 }

 public boolean isSuccessful()
 {
 return success;
 }

 public void setSuccessful(boolean success)
 {
 this.success = success;
 }

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 83 11/26/2002

 public Object getResults()
 {
 return result;
 }

 public void setResults(Object result)
 {
 this.result = result;
 }
}

Figure 22, WorkUnit.java pseudo code

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 84 11/26/2002

6 Appendix A - Application Architecture Questionnaire

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 85 11/26/2002

7 Appendix B - Object-Data Mapping Model

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 86 11/26/2002

8 Appendix C - ITA Coding Standards

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 87 11/26/2002

9 Appendix D - ITA Best Practices Guide

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 88 11/26/2002

10 Appendix E - Coding Standards Review Checklist

10.1 Introduction

10.1.1 Purpose
This document is provided by the ITA for code and peer reviews of Java coding standards. Please
document the "Reviewer Information" section and complete all questions and comments where
necessary when reviewing code.

10.1.2 References
The ITA deliverables 16.1.3 Java Coding Standards and the 46.1.5 ITA Best Practices documents served
as references for this document. (ITA deliverables, provided separately.)

10.1.3 Reviewer Information
Modules/ Packages Reviewed __________________ Developer __________________

Reviewer ______________________ Date Reviewed _____________

10.2 Java Coding Standards

10.2.1 Source Files

Source files are important because they import the files necessary for the program to run correctly. A
source file should contain one public class or interface (not including inner classes). When private
classes and interfaces are associated with a public class, they can be placed in the same source file as
the public class. The public class should be the first class or interface in a source file.

Each source file should include the following source files at the top of the code, in the following order:

• Beginning comments stating the file information
• A Package statement utilizing the gov.ed.fsa name base for all FSA custom packages
• import statements that are listed explicitly

Category Yes No Comments
Are the source files
accurate and correctly
stated?

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 89 11/26/2002

10.2.2 Code Layout

Code layout is important for making the code easily readable and easy to maintain. In addition, good
code layout facilitates debugging and locating errors. Ensure each source file follows the code layout
guidelines listed below:

• Class headers that are declared on one line
• Method headers that are on one line, if possible
• Using curly braces, even for one block statements

10.2.3 Naming Conventions

The naming conventions are important because they make programs more understandable and easier
to read. They also give information about the function of the identifier. Regarding naming
conventions, each source file should include:

• Custom-developed packages for FSA that utilize the gov.ed.fsa name convention
• The prefix of a unique package name in all-lowercase
• Class names that are nouns and their first letter is capitalized
• Variables that are in mixed case with a lowercase first letter
• Method names that are in proper case, with initial letter in lower-case
• Constants that are all uppercase
• Exception names that follow class-naming conventions, with the additional requirement

that the name end in “Exception”

Category Yes No Comments
Does the code follow
the code layout
guidelines??

Category Yes No Comments
Are the naming
conventions correctly
utilized?

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 90 11/26/2002

10.2.4 Programming Style
This section describes the layout and style of programming. Ensure that good programming styles
listed below are followed in each source file:

• A method that is generally not more than 50 “real” lines of code
• A method should generally do just one thing, and the method name should reflect this
• Variables should be declared one line at a time, unless directly related to another variable
• All variables should be declared explicitly
• Numerical constants (literals) should not be explicitly coded
• Use condition variables when necessary
• Use a for loop whenever possible, instead of a while, do/while, or other type
• Name all threads explicitly

10.2.5 Comments
Comments are important for walking through the code, and especially for debugging. Each source file
should contain:

• A single line comment, consisting of two front slashes //
• A multiple line comment, consisting of a front slash followed by an asterisk to begin the

comment /*, and an asterisk and front slash to end the comment */
• A JavaDoc comment, consisting of a front slash followed by an asterisk, /** to begin the

comment and an asterisk and front slash to end the comment */. A JavaDoc comment should
only be used if the user wants those comments extracted to the JavaDoc HTML file.

Category Yes No Comments
Is the programming
style clear and
understandable?

Category Yes No Comments
Does the source file
have the correct
comments?

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 91 11/26/2002

11 Appendix F - NSLDSLogger Pseudo Code

import gov.ed.sfa.ita.logging.Syslog;

/**
* The NSLDSLogger is a wrapper around the Syslog class provided by the RCS Logging framework.
* This class provides NSLDS-specific implementations of methods to execute the logging for the 4
* desired logging levels. The ERROR and FATAL logging levels are both implemented by the
* logException method.
*/
public class NSLDSLogger
{
 private NSLDSLogger logger;

 private NSLDSLogger()
 {
 super();
 }

 public static synchronized NSLDSLogger getLogger()
 {
 if (logger == null)
 {
 logger = new NSLDSLogger();
 }

 return logger;
 }

 // Log a short message and detailed message to the DEBUG level.
 public void logDebug(Object shortMsg, Object detailedMsg)
 {
 Syslog.log(getCallingclass(), LOG_CHANNEL, shortMsg, detailedMsg, Syslog.DEBUG);
 }

 // Log a short message and detailed message to the INFO level.
 public void logInfo(Object shortMsg, Object detailedMsg)
 {
 Syslog.log(getCallingClass(), LOG_CHANNEL, shortMsg, detailedMsg, Syslog.INFO);
 }

 // Logs a Java Exception. If it is an SFAException, the method checks to see if it is an Application Exception
 // or a System exception to determine the level of logging. Application Exceptions are logged as ERROR
while
 // System exceptions are FATAL.
 public void logException(Object customMsg, Throwable t)
 {
 // retrieve the Class that called the NSLDSLogger
 Class clazz = getCallingClass();

 // if t is of type SFAException then use the Exception Handling framework to locate the desc
 if (t instanceof SFAException)
 {

 FSA Modernization Program
NSLDS II Reengineering
Application Architecture

94.3.3 NSLDS II Detailed Design 92 11/26/2002

 // use the SFAExceptionFactory to get the log message associated with this exception code
 shortMsg = SFAExceptionFactory.getMessage(((SFAException)t).getCode());

 // check to see if the Throwable t is an Application Exception by determining it's exception code
 if (t is an ApplicationException)
 {
 // if t is an Application Exception, log it at the ERROR level
 Syslog.log(clazz, LOG_CHANNEL, shortMsg, customMsg, Syslog.ERROR);
 }
 else
 {
 // t is a System Exception so log at the FATAL level
 Syslog.log(clazz, LOG_CHANNEL, shortMsg, customMsg, Syslog.FATAL);
 }
 }
 // log Java Runtime exceptions as FATAL
 else
 {
 Syslog.log(clazz, LOG_CHANNEL, t.toString(), customMsg, Syslog.FATAL);
 }
 }

 // Determines the calling class of the NSLDSLogger by examining the stack trace.
 private Class getCallingClass() {
 // Record stack trace
 // Find class name of the class calling the NSLDSLogger
 // Create a new class using this class name
 // Return the new Class object
 }
}

